Summary: | The KITSUNE satellite is a 6-unit CubeSat platform with the main mission of 5-m-class Earth observation in low Earth orbit (LEO), and the payload is developed with a 31.4 MP commercial off-the-shelf sensor, customized optics, and a camera controller board. Even though the payload is designed for Earth observation and to capture man-made patterns on the ground as the main mission, a secondary mission is planned for the classification of wildfire images by the convolution neural network (CNN) approach. Therefore, KITSUNE will be the first CubeSat to employ CNN to classify wildfire images in LEO. In this study, a deep-learning approach is utilized onboard the satellite in order to reduce the downlink data by pre-processing instead of the traditional method of performing the image processing at the ground station. The pre-trained CNN models generated in Colab are saved in RPi CM3+, in which, an uplink command will execute the image classification algorithm and append the results on the captured image data. The on-ground testing indicated that it could achieve an overall accuracy of 98% and an F1 score of a 97% success rate in classifying the wildfire events running on the satellite system using the MiniVGGNet network. Meanwhile, the LeNet and ShallowNet models were also compared and implemented on the CubeSat with 95% and 92% F1 scores, respectively. Overall, this study demonstrated the capability of small satellites to perform CNN onboard in orbit. Finally, the KITSUNE satellite is deployed from ISS on March 2022. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
|