Groundwater level prediction using machine learning models: A comprehensive review

Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles ha...

Full description

Bibliographic Details
Published in:Neurocomputing
Main Author: Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
Format: Short survey
Language:English
Published: Elsevier B.V. 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126854743&doi=10.1016%2fj.neucom.2022.03.014&partnerID=40&md5=5e95b9575d5950f1af161383a5fd77ee
id 2-s2.0-85126854743
spelling 2-s2.0-85126854743
Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
Groundwater level prediction using machine learning models: A comprehensive review
2022
Neurocomputing
489

10.1016/j.neucom.2022.03.014
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126854743&doi=10.1016%2fj.neucom.2022.03.014&partnerID=40&md5=5e95b9575d5950f1af161383a5fd77ee
Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles have been published, reporting the advances in this field up to 2018. However, the existing review articles do not cover several aspects of GWL simulations using ML, which are significant for scientists and practitioners working in hydrology and water resource management. The current review article aims to provide a clear understanding of the state-of-the-art ML models implemented for GWL modeling and the milestones achieved in this domain. The review includes all of the types of ML models employed for GWL modeling from 2008 to 2020 (138 articles) and summarizes the details of the reviewed papers, including the types of models, data span, time scale, input and output parameters, performance criteria used, and the best models identified. Furthermore, recommendations for possible future research directions to improve the accuracy of GWL prediction models and enhance the related knowledge are outlined. © 2022 The Authors
Elsevier B.V.
9252312
English
Short survey
All Open Access; Hybrid Gold Open Access
author Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
spellingShingle Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
Groundwater level prediction using machine learning models: A comprehensive review
author_facet Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
author_sort Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
title Groundwater level prediction using machine learning models: A comprehensive review
title_short Groundwater level prediction using machine learning models: A comprehensive review
title_full Groundwater level prediction using machine learning models: A comprehensive review
title_fullStr Groundwater level prediction using machine learning models: A comprehensive review
title_full_unstemmed Groundwater level prediction using machine learning models: A comprehensive review
title_sort Groundwater level prediction using machine learning models: A comprehensive review
publishDate 2022
container_title Neurocomputing
container_volume 489
container_issue
doi_str_mv 10.1016/j.neucom.2022.03.014
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126854743&doi=10.1016%2fj.neucom.2022.03.014&partnerID=40&md5=5e95b9575d5950f1af161383a5fd77ee
description Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles have been published, reporting the advances in this field up to 2018. However, the existing review articles do not cover several aspects of GWL simulations using ML, which are significant for scientists and practitioners working in hydrology and water resource management. The current review article aims to provide a clear understanding of the state-of-the-art ML models implemented for GWL modeling and the milestones achieved in this domain. The review includes all of the types of ML models employed for GWL modeling from 2008 to 2020 (138 articles) and summarizes the details of the reviewed papers, including the types of models, data span, time scale, input and output parameters, performance criteria used, and the best models identified. Furthermore, recommendations for possible future research directions to improve the accuracy of GWL prediction models and enhance the related knowledge are outlined. © 2022 The Authors
publisher Elsevier B.V.
issn 9252312
language English
format Short survey
accesstype All Open Access; Hybrid Gold Open Access
record_format scopus
collection Scopus
_version_ 1812871798360899584