Short term forecasting of electrical consumption using a neural network: joint approximate diagonal eigenvalue

This article aims to estimate the load profiling of electricity that provides information on the electrical load demand. In achieving this research implemented the neural network algorithm of joint approximate diagonalisation of eigen-matrices (JADE) to describe the load profile pattern for each poi...

Full description

Bibliographic Details
Published in:Indonesian Journal of Electrical Engineering and Computer Science
Main Author: Hussain M.M.; Zakaria Z.; Dahlan N.Y.; Ilham N.I.; Hussin Z.; Rahman N.H.A.; Yasin M.A.M.
Format: Article
Language:English
Published: Institute of Advanced Engineering and Science 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126718341&doi=10.11591%2fijeecs.v26.i1.pp56-66&partnerID=40&md5=a4f51697b174bf90cc772e186d787314
Description
Summary:This article aims to estimate the load profiling of electricity that provides information on the electrical load demand. In achieving this research implemented the neural network algorithm of joint approximate diagonalisation of eigen-matrices (JADE) to describe the load profile pattern for each point. Nowadays, utility providers claim that natural sources are used to generate power by rising consumer demands for energy. However, occasionally utility workers need to know the demand at certain location, corresponding to maintenance issues or for any shutdown area involved. A distribution pattern based on the data can be predicted based on the incoming data profile without having detailed information of certain load bus, the concept of derivatives was relevant to forecast the types of distribution data. The model was constructed with load profile information based on three different locations, and the concept of derivative was recognized, including the type of incoming data. Historical data were captured from a selected location in Malaysia that was proposed to train the JADE algorithm from three different empirical distributions of consumers, recording every 15 minutes per day. The results were analyzed based on the error measurement and compared with the real specific load distribution feeder information of needed profiles. © 2022 Institute of Advanced Engineering and Science. All rights reserved.
ISSN:25024752
DOI:10.11591/ijeecs.v26.i1.pp56-66