On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula

The estimation of the unknown parameters of the photovoltaic (PV) model is crucial for accurately verifying its real performance precisely under a wide range of climatic conditions. This paper presents an approach to determine the nine parameters of the three diode (TD) PV model based on the integra...

Full description

Bibliographic Details
Published in:Energy Conversion and Management
Main Author: Ridha H.M.; Hizam H.; Mirjalili S.; Othman M.L.; Ya'acob M.E.; Ahmadipour M.; Ismaeel N.Q.
Format: Article
Language:English
Published: Elsevier Ltd 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126146576&doi=10.1016%2fj.enconman.2022.115403&partnerID=40&md5=f243ab2af99165f00856aabfaa151cae
id 2-s2.0-85126146576
spelling 2-s2.0-85126146576
Ridha H.M.; Hizam H.; Mirjalili S.; Othman M.L.; Ya'acob M.E.; Ahmadipour M.; Ismaeel N.Q.
On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
2022
Energy Conversion and Management
256

10.1016/j.enconman.2022.115403
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126146576&doi=10.1016%2fj.enconman.2022.115403&partnerID=40&md5=f243ab2af99165f00856aabfaa151cae
The estimation of the unknown parameters of the photovoltaic (PV) model is crucial for accurately verifying its real performance precisely under a wide range of climatic conditions. This paper presents an approach to determine the nine parameters of the three diode (TD) PV model based on the integration of the guaranteed convergence arithmetic optimization algorithm and Levenberg-Marquardt with adaptive damping nonlinear parameter method named as GCAOAAdLM. The keystone of the GCAOAAdLM model is accomplished by efficaciously enhancing the exploiter-explorer tendency with inclusion of various powerful hybrid strategies in terms the methodology itself. In addition, the objective function is newly designed leveraging on Levenberg-Marquardt with adaptive damping parameter method to accurately determine the initial roots parameters of the TD PV model. The experimental results demonstrate that the proposed GCAOAAdLM can reduce the root mean square error (RMSE), mean bias error (MBE), deviation of solar radiation's levels (di), test statistical (TS), and absolute error (AE) to zero and the determination coefficient (R2) to 1 for all environmental conditions, with statistical reasons and comparisons against well-published approaches available in the literature. © 2022 Elsevier Ltd
Elsevier Ltd
1968904
English
Article

author Ridha H.M.; Hizam H.; Mirjalili S.; Othman M.L.; Ya'acob M.E.; Ahmadipour M.; Ismaeel N.Q.
spellingShingle Ridha H.M.; Hizam H.; Mirjalili S.; Othman M.L.; Ya'acob M.E.; Ahmadipour M.; Ismaeel N.Q.
On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
author_facet Ridha H.M.; Hizam H.; Mirjalili S.; Othman M.L.; Ya'acob M.E.; Ahmadipour M.; Ismaeel N.Q.
author_sort Ridha H.M.; Hizam H.; Mirjalili S.; Othman M.L.; Ya'acob M.E.; Ahmadipour M.; Ismaeel N.Q.
title On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
title_short On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
title_full On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
title_fullStr On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
title_full_unstemmed On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
title_sort On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula
publishDate 2022
container_title Energy Conversion and Management
container_volume 256
container_issue
doi_str_mv 10.1016/j.enconman.2022.115403
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126146576&doi=10.1016%2fj.enconman.2022.115403&partnerID=40&md5=f243ab2af99165f00856aabfaa151cae
description The estimation of the unknown parameters of the photovoltaic (PV) model is crucial for accurately verifying its real performance precisely under a wide range of climatic conditions. This paper presents an approach to determine the nine parameters of the three diode (TD) PV model based on the integration of the guaranteed convergence arithmetic optimization algorithm and Levenberg-Marquardt with adaptive damping nonlinear parameter method named as GCAOAAdLM. The keystone of the GCAOAAdLM model is accomplished by efficaciously enhancing the exploiter-explorer tendency with inclusion of various powerful hybrid strategies in terms the methodology itself. In addition, the objective function is newly designed leveraging on Levenberg-Marquardt with adaptive damping parameter method to accurately determine the initial roots parameters of the TD PV model. The experimental results demonstrate that the proposed GCAOAAdLM can reduce the root mean square error (RMSE), mean bias error (MBE), deviation of solar radiation's levels (di), test statistical (TS), and absolute error (AE) to zero and the determination coefficient (R2) to 1 for all environmental conditions, with statistical reasons and comparisons against well-published approaches available in the literature. © 2022 Elsevier Ltd
publisher Elsevier Ltd
issn 1968904
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1823296160274579456