Electrical and electrochemical studies of polymer gel electrolytes based on agarose–libob and p(Vp-co-vac)–libob

This study focuses on preparation and characterization of polymer gel electrolytes (PGEs) based on agarose–LiBOB–DMSO and poly(1-vinylpyrrolidone-co-vinyl acetate)–LiBOB–DMSO. Two systems of PGEs were prepared by dissolving a different amount (1-8 wt.%) of agarose and (1-8 wt.%) P(VP-co-VAc) as host...

Full description

Bibliographic Details
Published in:Solid State Phenomena
Main Author: Muhammad Syahir S.A.; Siti Zafirah Z.A.; Mohamad Fariz M.T.; Muhd Zu Azhan Y.
Format: Conference paper
Language:English
Published: Trans Tech Publications Ltd 2021
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120535615&doi=10.4028%2fwww.scientific.net%2fSSP.317.385&partnerID=40&md5=b8d797f8462bd2b3f23e793111e32955
Description
Summary:This study focuses on preparation and characterization of polymer gel electrolytes (PGEs) based on agarose–LiBOB–DMSO and poly(1-vinylpyrrolidone-co-vinyl acetate)–LiBOB–DMSO. Two systems of PGEs were prepared by dissolving a different amount (1-8 wt.%) of agarose and (1-8 wt.%) P(VP-co-VAc) as host polymer in 0.8 M of LiBOB–DMSO solution. The addition of host polymer into 0.8 M of LiBOB–DMSO solution will result an optimum conductivity which is 6.91 x 10-3 S.cm-1 for agarose–LiBOB–DMSO system and 7.83 x 10-3 S.cm-1 for P(VP-co-VAc)–LiBOB–DMSO system. In the temperature range of conductivity studies discovered that the agarose–LiBOB–DMSO and P(VP-co-VAc)–LiBOB–DMSO polymer gel electrolytes abide by Arrhenius rule indicating that this PGEs could run at elevated temperature conditions. Furthermore, lithium transference number confirms that both electrolyte systems have 0.03 and 0.12 respectively at room temperature (298 K). Linear sweep voltammetry (LSV) measurements demonstrate the agarose–LiBOB–DMSO system has a potential of 4.26 V and P(VP-co-VAc)–LiBOB–DMSO system has a potential of 4.50 V which is good in electrochemical stability. © 2021 Trans Tech Publications Ltd, Switzerland.
ISSN:10120394
DOI:10.4028/www.scientific.net/SSP.317.385