Enhancing big data feature selection using a hybrid correlation-based feature selection
This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search (BFS), and dominance-based rough set approach (DRSA) methods. This study aims...
Published in: | Electronics (Switzerland) |
---|---|
Main Author: | Mohamad M.; Selamat A.; Krejcar O.; Crespo R.G.; Herrera-Viedma E.; Fujita H. |
Format: | Article |
Language: | English |
Published: |
MDPI
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120159767&doi=10.3390%2felectronics10232984&partnerID=40&md5=f7043c22bd74f2e2b6993aab356ca26e |
Similar Items
-
Hybrid embedded and filter feature selection methods in big-dimension mammary cancer and prostatic cancer data
by: Md Noh S.S.; Ibrahim N.; Mansor M.M.; Md Ghani N.A.; Yusoff M.
Published: (2024) -
Preliminary study on multiple imputation for nonresponse in survey data with feature selection
by: Jasin A.M.; Asmat A.
Published: (2023) -
Obesity Predictor Identification: Comparison of Correlation Based Feature Selection Method and Wrapper Method on Nutrition Dataset
by: Daud N.; Noordin N.; Lokman A.
Published: (2025) -
Improved building roof type classification using correlation-based feature selection and gain ratio algorithms
by: Norman M.; Shafri H.Z.M.; Pradhan B.; Yusuf B.
Published: (2019) -
Supervised feature selection using principal component analysis
by: Rahmat F.; Zulkafli Z.; Ishak A.J.; Abdul Rahman R.Z.; Stercke S.D.; Buytaert W.; Tahir W.; Ab Rahman J.; Ibrahim S.; Ismail M.
Published: (2024)