Summary: | Carbon nanotubes (CNTs) reinforced with metal matrix composites (MMCs) have attracted an increasing interest due to their promising properties. One of the challenges in metal matrix-CNTs composites research is producing a uniform dispersion of CNTs. A poor dispersion of CNTs within the matrix, attributed to strong CNTs entanglement caused by Van der Waals forces. In this study, Cu/CNTs composites have been successfully fabricated by the powder metallurgy (PM) route. The thermal conductivity of Cu/CNTs composites showed that the thermal conductivity decreased after the incorporation of CNTs. The analysis revealed that the interfacial thermal resistance between the Cu matrix and CNTs plays a significant role in determining the thermal conductivity performances. Besides, the influences of porosity and distribution of CNTs also affected the thermal conductivity results. © 2021 Institute of Physics Publishing. All rights reserved.
|