Artificial intelligence models for suspended river sediment prediction: state-of-the art, modeling framework appraisal, and proposed future research directions
River sedimentation is an important indicator for ecological and geomorphological assessments of soil erosion within any watershed region. Sediment transport in a river basin is therefore a multifaceted field yet being a dynamic task in nature. It is characterized by high stochasticity, non-linearit...
Similar Items
-
Groundwater level prediction using machine learning models: A comprehensive review
by: Tao H.; Hameed M.M.; Marhoon H.A.; Zounemat-Kermani M.; Heddam S.; Sungwon K.; Sulaiman S.O.; Tan M.L.; Sa'adi Z.; Mehr A.D.; Allawi M.F.; Abba S.I.; Zain J.M.; Falah M.W.; Jamei M.; Bokde N.D.; Bayatvarkeshi M.; Al-Mukhtar M.; Bhagat S.K.; Tiyasha T.; Khedher K.M.; Al-Ansari N.; Shahid S.; Yaseen Z.M.
Published: (2022) -
Proposed improvements to Istibdal implementation management in the state of Penang
by: Mohammed Noor A.; Asni F.; Hasbulah M.H.; Ramle M.R.
Published: (2025) -
Developing an Integrative Data Intelligence Model for Construction Cost Estimation
by: Ali Z.H.; Burhan A.M.; Kassim M.; Al-Khafaji Z.
Published: (2022) -
Re-appraising the Tax Exemption of Social Enterprises (SEs) in Malaysia: Selected Tax Exemption Theories
by: Md Radzi M.S.N.; Ariffin R.A.M.; Aziz H.A.; Ghadas Z.A.A.; Anas A.M.A.
Published: (2024) -
A new proposed location registration procedure in next-generation mobile networks (NGMN)
by: Yusof A.L.; Ya'Acob N.; Ali M.T.; Idris A.
Published: (2011)