Summary: | This review presents the state of the art of process intensification in multifunctional reactor designs based on selected literature published in the 21st century thus far. A multifunctional reactor operates to meet the objective of multiple operations. For example, hybridization of reaction and separation processes and improving reaction efficiency via integration of the reactor with equipment/methods/operating modes that promote effective transport (heat, mass, or momentum) processes of the reacting system. This review focuses on the current state-of-the-art lab- and pilot-scale physical and simulated designs of multifunctional reactors containing catalytic structures such as monoliths or internals such as spirals, packing, static mixers, stirrers, inner tubes, baffles, or multistage-arranged internals in a single vessel/tube/pipeline/compact unit. This review also includes multifunctional reactor designs that couple two or more main reactions in a single unit. Finally, the scale-up and commercialization potentials of multifunctional reactors are discussed. © 2021 Elsevier B.V.
|