Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions
In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89%...
Published in: | Environmental Science and Pollution Research |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media Deutschland GmbH
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109320315&doi=10.1007%2fs11356-021-14918-y&partnerID=40&md5=fb397cad550f363a0ac1952cb7cf0724 |
id |
2-s2.0-85109320315 |
---|---|
spelling |
2-s2.0-85109320315 Abu Bakar S.; Jusoh N.; Mohamed A.; Muqoyyanah M.; Othman M.H.D.; Mamat M.H.; Ahmad M.K.; Mohamed M.A.; Azlan M.N.; Hashim N.; Birowosuto M.D.; Soga T. Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions 2021 Environmental Science and Pollution Research 28 46 10.1007/s11356-021-14918-y https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109320315&doi=10.1007%2fs11356-021-14918-y&partnerID=40&md5=fb397cad550f363a0ac1952cb7cf0724 In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ≈ Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. Springer Science and Business Media Deutschland GmbH 9441344 English Article |
author |
Abu Bakar S.; Jusoh N.; Mohamed A.; Muqoyyanah M.; Othman M.H.D.; Mamat M.H.; Ahmad M.K.; Mohamed M.A.; Azlan M.N.; Hashim N.; Birowosuto M.D.; Soga T. |
spellingShingle |
Abu Bakar S.; Jusoh N.; Mohamed A.; Muqoyyanah M.; Othman M.H.D.; Mamat M.H.; Ahmad M.K.; Mohamed M.A.; Azlan M.N.; Hashim N.; Birowosuto M.D.; Soga T. Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
author_facet |
Abu Bakar S.; Jusoh N.; Mohamed A.; Muqoyyanah M.; Othman M.H.D.; Mamat M.H.; Ahmad M.K.; Mohamed M.A.; Azlan M.N.; Hashim N.; Birowosuto M.D.; Soga T. |
author_sort |
Abu Bakar S.; Jusoh N.; Mohamed A.; Muqoyyanah M.; Othman M.H.D.; Mamat M.H.; Ahmad M.K.; Mohamed M.A.; Azlan M.N.; Hashim N.; Birowosuto M.D.; Soga T. |
title |
Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
title_short |
Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
title_full |
Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
title_fullStr |
Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
title_full_unstemmed |
Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
title_sort |
Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions |
publishDate |
2021 |
container_title |
Environmental Science and Pollution Research |
container_volume |
28 |
container_issue |
46 |
doi_str_mv |
10.1007/s11356-021-14918-y |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109320315&doi=10.1007%2fs11356-021-14918-y&partnerID=40&md5=fb397cad550f363a0ac1952cb7cf0724 |
description |
In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ≈ Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
publisher |
Springer Science and Business Media Deutschland GmbH |
issn |
9441344 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1825722583480270848 |