Comparison of single and mice imputation methods for missing values: A simulation study
High quality data is essential in every field of research for valid research findings. The presence of missing data in a dataset is common and occurs for a variety of reasons such as incomplete responses, equipment malfunction and data entry error. Single and multiple data imputation methods have be...
Published in: | Pertanika Journal of Science and Technology |
---|---|
Main Author: | Pauzi N.A.M.; Wah Y.B.; Deni S.M.; Rahim S.K.N.A.; Suhartono |
Format: | Article |
Language: | English |
Published: |
Universiti Putra Malaysia Press
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106861952&doi=10.47836%2fpjst.29.2.15&partnerID=40&md5=33c00e57e50b9f865aebb2fc1868ed20 |
Similar Items
-
A comparison of model-based imputation methods for handling missing predictor values in a linear regression model: A simulation study
by: Hasan H.; Ahmad S.; Osman B.M.; Sapri S.; Othman N.
Published: (2017) -
Estimation of missing values in air pollution dataset by using various imputation methods
by: Sukatis F.F.; Noor N.M.; Zakaria N.A.; Ul-Saufie A.Z.; Suwardi A.
Published: (2019) -
Comparison of Multiple Regression and Model Averaging Model-Building Approach for Missing Data with Multiple Imputation
by: Abdullah M.A.A.; Jessintha L.; Khuneswari G.P.; Jamil S.A.M.; Olaniran O.R.
Published: (2024) -
Time Series Data and Recent Imputation Techniques for Missing Data: A Review
by: Zainuddin A.; Hairuddin M.A.; Yassin A.I.M.; Latiff Z.I.A.; Azhar A.
Published: (2022) -
Missing River Discharge Data Imputation Approach using Artificial Neural Network
by: Mispan M.R.; Rahman N.F.A.; Ali M.F.; Khalid K.; Bakar M.H.A.; Haron S.H.
Published: (2015)