Missing River Discharge Data Imputation Approach using Artificial Neural Network
The issue with missing data in hydrological models are very common and it occurs when no data value was stored during observation. In modelling, the missing data can affect the conclusion that can be drawn from the dataset. This paper presents the study on Levenberg-Marquadt back propagation algorit...
Published in: | ARPN Journal of Engineering and Applied Sciences |
---|---|
Main Author: | Mispan M.R.; Rahman N.F.A.; Ali M.F.; Khalid K.; Bakar M.H.A.; Haron S.H. |
Format: | Article |
Language: | English |
Published: |
Asian Research Publishing Network
2015
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101170010&partnerID=40&md5=eab1dcbfa5795d1840e563222fff4331 |
Similar Items
-
Time Series Data and Recent Imputation Techniques for Missing Data: A Review
by: Zainuddin A.; Hairuddin M.A.; Yassin A.I.M.; Latiff Z.I.A.; Azhar A.
Published: (2022) -
Comparison of Multiple Regression and Model Averaging Model-Building Approach for Missing Data with Multiple Imputation
by: Abdullah M.A.A.; Jessintha L.; Khuneswari G.P.; Jamil S.A.M.; Olaniran O.R.
Published: (2024) -
Missing data imputation of MAGDAS-9’s ground electromagnetism with supervised machine learning and conventional statistical analysis models
by: H. M.A.; K.A. N.D.; Md Tahir N.; Iffah Abd Latiff Z.; Huzaimy Jusoh M.; Akimasa Y.
Published: (2022) -
Estimation of missing values in air pollution dataset by using various imputation methods
by: Sukatis F.F.; Noor N.M.; Zakaria N.A.; Ul-Saufie A.Z.; Suwardi A.
Published: (2019) -
Comparison of single and mice imputation methods for missing values: A simulation study
by: Pauzi N.A.M.; Wah Y.B.; Deni S.M.; Rahim S.K.N.A.; Suhartono
Published: (2021)