The effect of jackfruit skin powder and fiber bleaching treatment in pla composites with incorporation of thymol

Food packaging has seen a growth in the use of materials derived from renewable resources such as poly(lactic acid) (PLA). However, the initial costs to produce bioplastics are typically high. Tropical fruit waste as naturally sourced fibres, such as jackfruit skin, can be used as a cost-reducing fi...

Full description

Bibliographic Details
Published in:Polymers
Main Author: Marzuki M.N.A.; Tawakkal I.S.M.A.; Basri M.S.M.; Othman S.H.; Kamarudin S.H.; Lee C.H.; Khalina A.
Format: Article
Language:English
Published: MDPI AG 2020
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095823390&doi=10.3390%2fpolym12112622&partnerID=40&md5=11280af4c81872a3044cd75bb5ffcfc9
Description
Summary:Food packaging has seen a growth in the use of materials derived from renewable resources such as poly(lactic acid) (PLA). However, the initial costs to produce bioplastics are typically high. Tropical fruit waste as naturally sourced fibres, such as jackfruit skin, can be used as a cost-reducing filler for PLA. The main objective in this study is to fabricate a low-cost natural fibre-reinforced polymer that potentially applies in packaging with the aid of bleaching treatment. The treatment shows a rougher surface fibre in Scanning electron microscopy (SEM) micrographs and it is expected to have better mechanical locking with the matrix, and this is found similar with a Fourier-transform infrared spectroscopy (FTIR) analysis. Unfortunately, fibre insertion does find low tensile performances, yet bleached-fibre composites improved its performance significantly. A similar situation was found in the thermal characterization where a low-thermal stability natural fibre composite has lower thermal behaviour and this increased with bleaching treatment. Besides, bleached-fibre composites have a longer service period. Besides, a 15 wt% thymol insertion inhibits the growth of Gram-positive bacteria in the composites and the non-treated fibre composite has better thymol effects. The 30 wt% of the bleached-fibre insertion composite has a high potential to reduce the cost of bioplastic products with minimum alterations of overall performances. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
ISSN:20734360
DOI:10.3390/polym12112622