Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes

The biggest challenge surrounding application of polymeric membranes for gas separation is their trade–off between gas permeation and selectivity. Therefore, the use of mixed matrix membranes (MMMs) comprising inorganic materials embedded into a polymer matrix can overcome this issue. In this work,...

Full description

Bibliographic Details
Published in:Jurnal Teknologi
Main Author: Jamil N.; Othman N.H.; Shahrudin M.Z.; Razlan M.R.M.; Alias N.H.; Marpani F.; Jye L.W.; Goh P.S.; Ismail A.F.
Format: Article
Language:English
Published: Penerbit UTM Press 2020
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095799960&doi=10.11113%2fjt.v82.13872&partnerID=40&md5=cbce43f107848c97457fc2ec2d4602e2
id 2-s2.0-85095799960
spelling 2-s2.0-85095799960
Jamil N.; Othman N.H.; Shahrudin M.Z.; Razlan M.R.M.; Alias N.H.; Marpani F.; Jye L.W.; Goh P.S.; Ismail A.F.
Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
2020
Jurnal Teknologi
82
2
10.11113/jt.v82.13872
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095799960&doi=10.11113%2fjt.v82.13872&partnerID=40&md5=cbce43f107848c97457fc2ec2d4602e2
The biggest challenge surrounding application of polymeric membranes for gas separation is their trade–off between gas permeation and selectivity. Therefore, the use of mixed matrix membranes (MMMs) comprising inorganic materials embedded into a polymer matrix can overcome this issue. In this work, PES flat sheet membrane and MMMs consists of 10 wt.% of rGO/ZIF-8 hybrid nanofillers were fabricated via dry/wet phase inversion process. Dip‐coating technique was then used to deposit PEBAX selective layer onto the surface of rGO/ZIF-8 PES support. The effects of PEBAX coating solution concentrations (2, 3 and 4 wt.%) on the permselectivity of CO2 and CH4 were investigated. The as-prepared rGO/ZIF-8 nanofillers and MMMs were characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (SEM) prior to gas separation performance study. Gas permeation testing was carried out at operating pressure of 1, 3 and 5 bar using CO2 and CH4 gasses. It was observed that the prepared PES membranes and rGO/ZIF-8 PES MMMs did not have any selectivity towards the gases although their permeability was high. As the concentration of PEBAX coating solution increased, thicker coating layer was formed. Therefore, the permeability of CO2 rapidly dropped but the CO2/CH4 selectivity increased significantly up to 38.4. Results indicated that the use of 2 wt.% of PEBAX was not effective to form homogenous coating layers on PES membrane and to cover any defects on membrane surfaces, thus, possessing low selectivity of CO2/CH4. The high gas separation performances obtained in this work was due to the synergistic effect rGO and ZIF-8 crystals. In the rGO/ZIF-8 MMMs, the dispersibility are enhanced due to the presence of distorted rGO sheets, while the ZIF-8 component ensure the porosity of the nanofillers and permit gas interactions with the metallic sites and functional groups on the organic linker. These sites facilitate the reactive adsorption leading to enhanced CO2 adsorption as compared to CH4. © 2020 Penerbit UTM Press. All rights reserved.
Penerbit UTM Press
1279696
English
Article
All Open Access; Gold Open Access
author Jamil N.; Othman N.H.; Shahrudin M.Z.; Razlan M.R.M.; Alias N.H.; Marpani F.; Jye L.W.; Goh P.S.; Ismail A.F.
spellingShingle Jamil N.; Othman N.H.; Shahrudin M.Z.; Razlan M.R.M.; Alias N.H.; Marpani F.; Jye L.W.; Goh P.S.; Ismail A.F.
Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
author_facet Jamil N.; Othman N.H.; Shahrudin M.Z.; Razlan M.R.M.; Alias N.H.; Marpani F.; Jye L.W.; Goh P.S.; Ismail A.F.
author_sort Jamil N.; Othman N.H.; Shahrudin M.Z.; Razlan M.R.M.; Alias N.H.; Marpani F.; Jye L.W.; Goh P.S.; Ismail A.F.
title Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
title_short Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
title_full Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
title_fullStr Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
title_full_unstemmed Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
title_sort Effects of pebax coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes
publishDate 2020
container_title Jurnal Teknologi
container_volume 82
container_issue 2
doi_str_mv 10.11113/jt.v82.13872
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095799960&doi=10.11113%2fjt.v82.13872&partnerID=40&md5=cbce43f107848c97457fc2ec2d4602e2
description The biggest challenge surrounding application of polymeric membranes for gas separation is their trade–off between gas permeation and selectivity. Therefore, the use of mixed matrix membranes (MMMs) comprising inorganic materials embedded into a polymer matrix can overcome this issue. In this work, PES flat sheet membrane and MMMs consists of 10 wt.% of rGO/ZIF-8 hybrid nanofillers were fabricated via dry/wet phase inversion process. Dip‐coating technique was then used to deposit PEBAX selective layer onto the surface of rGO/ZIF-8 PES support. The effects of PEBAX coating solution concentrations (2, 3 and 4 wt.%) on the permselectivity of CO2 and CH4 were investigated. The as-prepared rGO/ZIF-8 nanofillers and MMMs were characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (SEM) prior to gas separation performance study. Gas permeation testing was carried out at operating pressure of 1, 3 and 5 bar using CO2 and CH4 gasses. It was observed that the prepared PES membranes and rGO/ZIF-8 PES MMMs did not have any selectivity towards the gases although their permeability was high. As the concentration of PEBAX coating solution increased, thicker coating layer was formed. Therefore, the permeability of CO2 rapidly dropped but the CO2/CH4 selectivity increased significantly up to 38.4. Results indicated that the use of 2 wt.% of PEBAX was not effective to form homogenous coating layers on PES membrane and to cover any defects on membrane surfaces, thus, possessing low selectivity of CO2/CH4. The high gas separation performances obtained in this work was due to the synergistic effect rGO and ZIF-8 crystals. In the rGO/ZIF-8 MMMs, the dispersibility are enhanced due to the presence of distorted rGO sheets, while the ZIF-8 component ensure the porosity of the nanofillers and permit gas interactions with the metallic sites and functional groups on the organic linker. These sites facilitate the reactive adsorption leading to enhanced CO2 adsorption as compared to CH4. © 2020 Penerbit UTM Press. All rights reserved.
publisher Penerbit UTM Press
issn 1279696
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809677898064330752