Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm
Magnetorheological (MR) damper system is commonly used to replace the conventional damper in the suspension system due to its low power consumption, fast time response and simple structure. Since inner loop controller is very important in defining the amount of current supplied to the MR damper syst...
Published in: | Proceedings of the 2019 2nd International Conference on Applied Engineering, ICAE 2019 |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2019
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095452230&doi=10.1109%2fICAE47758.2019.9221705&partnerID=40&md5=4921192126947dbdae4b6fc767690532 |
id |
2-s2.0-85095452230 |
---|---|
spelling |
2-s2.0-85095452230 Ab Talib M.H.; Darus I.Z.M.; Yatim H.M.; Shaharuddin N.M.R.; Hadi M.S.; Jamali A. Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm 2019 Proceedings of the 2019 2nd International Conference on Applied Engineering, ICAE 2019 10.1109/ICAE47758.2019.9221705 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095452230&doi=10.1109%2fICAE47758.2019.9221705&partnerID=40&md5=4921192126947dbdae4b6fc767690532 Magnetorheological (MR) damper system is commonly used to replace the conventional damper in the suspension system due to its low power consumption, fast time response and simple structure. Since inner loop controller is very important in defining the amount of current supplied to the MR damper system, many existing controllers are found not well-structured in terms of calculating the optimum value of the controller parameter. Poor control design using the conventional method will cause the output current obtained for the MR damper to be unpredictable. To overcome this problem, an intelligent optimization method known as firefly algorithm (FA) was used by this study to optimize the force tracking controller (FTC) parameters as to achieve the exact damping force of MR damper system. The MR damper was first developed using Spencer model and the required voltage input was then provided by the FTC. The controller parameters were tuned using intelligent FA method in order to find the optimum values which would identify the accuracy of the force tracking that followed the MR damping force. The simulation shows that the FTC with FA technique is able to track the desired force better than the heuristic method up to 1.71 % error considering a given desired input force. © 2019 IEEE. Institute of Electrical and Electronics Engineers Inc. English Conference paper All Open Access; Green Open Access |
author |
Ab Talib M.H.; Darus I.Z.M.; Yatim H.M.; Shaharuddin N.M.R.; Hadi M.S.; Jamali A. |
spellingShingle |
Ab Talib M.H.; Darus I.Z.M.; Yatim H.M.; Shaharuddin N.M.R.; Hadi M.S.; Jamali A. Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
author_facet |
Ab Talib M.H.; Darus I.Z.M.; Yatim H.M.; Shaharuddin N.M.R.; Hadi M.S.; Jamali A. |
author_sort |
Ab Talib M.H.; Darus I.Z.M.; Yatim H.M.; Shaharuddin N.M.R.; Hadi M.S.; Jamali A. |
title |
Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
title_short |
Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
title_full |
Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
title_fullStr |
Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
title_full_unstemmed |
Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
title_sort |
Intelligent Optimization of Force Tracking Parameters for MR Damper Modelling using Firefly Algorithm |
publishDate |
2019 |
container_title |
Proceedings of the 2019 2nd International Conference on Applied Engineering, ICAE 2019 |
container_volume |
|
container_issue |
|
doi_str_mv |
10.1109/ICAE47758.2019.9221705 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095452230&doi=10.1109%2fICAE47758.2019.9221705&partnerID=40&md5=4921192126947dbdae4b6fc767690532 |
description |
Magnetorheological (MR) damper system is commonly used to replace the conventional damper in the suspension system due to its low power consumption, fast time response and simple structure. Since inner loop controller is very important in defining the amount of current supplied to the MR damper system, many existing controllers are found not well-structured in terms of calculating the optimum value of the controller parameter. Poor control design using the conventional method will cause the output current obtained for the MR damper to be unpredictable. To overcome this problem, an intelligent optimization method known as firefly algorithm (FA) was used by this study to optimize the force tracking controller (FTC) parameters as to achieve the exact damping force of MR damper system. The MR damper was first developed using Spencer model and the required voltage input was then provided by the FTC. The controller parameters were tuned using intelligent FA method in order to find the optimum values which would identify the accuracy of the force tracking that followed the MR damping force. The simulation shows that the FTC with FA technique is able to track the desired force better than the heuristic method up to 1.71 % error considering a given desired input force. © 2019 IEEE. |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
issn |
|
language |
English |
format |
Conference paper |
accesstype |
All Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677902951743488 |