Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent.
Greenhouse effect is the serious environmental issue whereby the gaseous component involved is dangerous. One of the gases that contributed to atmosphere is carbon dioxide (CO2), in which is more than 80%, followed by methane and nitrous oxide that resulted from human activities, industrial sector a...
Published in: | IOP Conference Series: Earth and Environmental Science |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
Institute of Physics Publishing
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089154708&doi=10.1088%2f1755-1315%2f479%2f1%2f012024&partnerID=40&md5=c475db2a5893f53e5128412f91b6563b |
id |
2-s2.0-85089154708 |
---|---|
spelling |
2-s2.0-85089154708 Sahri D.M.; Zaini N.; Nasri N.S.; Zain H.M.; Rashid N.M.; Noor Shawal A.S. Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. 2020 IOP Conference Series: Earth and Environmental Science 479 1 10.1088/1755-1315/479/1/012024 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089154708&doi=10.1088%2f1755-1315%2f479%2f1%2f012024&partnerID=40&md5=c475db2a5893f53e5128412f91b6563b Greenhouse effect is the serious environmental issue whereby the gaseous component involved is dangerous. One of the gases that contributed to atmosphere is carbon dioxide (CO2), in which is more than 80%, followed by methane and nitrous oxide that resulted from human activities, industrial sector and transportation. Activated carbon (AC) is the best adsorption technology due to simple design and ability to capture carbon dioxide efficiently. This paper was aimed to produce activated carbon derived from waste material, to determine adsorption rate at different pressures and temperatures and to relate adsorption kinetics and isotherms equilibrium to describe adsorption processes. Palm Kernel Shell (PKS) was selected as raw material to produce AC. Char was produced via carbonization process at 700 °C ± 20 °C for 2 h with 10 °C/min heating rate under inert gas flow. The sample is then grinded and sieved to 0.65mm to 0.8mm, followed by chemical treatment by using potassium hydroxide with ratio of 1:1 and directly undergoing microwave treatment. Adsorption rate performances were investigated by different temperatures of 25 °C and 10 °C and pressures of 5, 15 and 25 bar. The sample were characterized by thermo-gravimetric analysis, surface area analysis, and ultimate analysis. AC-PKS shows the highest surface area. As a result, increase in pressure led to increase in CO2 adsorption while decrease in temperature in CO2 adsorption. In conclusion, the findings revealed that the potential of AC-PKS to capture CO2 in order to enhance environmental sustainability and economically. © Published under licence by IOP Publishing Ltd. Institute of Physics Publishing 17551307 English Conference paper All Open Access; Gold Open Access |
author |
Sahri D.M.; Zaini N.; Nasri N.S.; Zain H.M.; Rashid N.M.; Noor Shawal A.S. |
spellingShingle |
Sahri D.M.; Zaini N.; Nasri N.S.; Zain H.M.; Rashid N.M.; Noor Shawal A.S. Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
author_facet |
Sahri D.M.; Zaini N.; Nasri N.S.; Zain H.M.; Rashid N.M.; Noor Shawal A.S. |
author_sort |
Sahri D.M.; Zaini N.; Nasri N.S.; Zain H.M.; Rashid N.M.; Noor Shawal A.S. |
title |
Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
title_short |
Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
title_full |
Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
title_fullStr |
Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
title_full_unstemmed |
Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
title_sort |
Carbon Dioxide Adsorption Equilibrium Rates Comparative Temperature Study Using Palm Kernel Shell Sorbent. |
publishDate |
2020 |
container_title |
IOP Conference Series: Earth and Environmental Science |
container_volume |
479 |
container_issue |
1 |
doi_str_mv |
10.1088/1755-1315/479/1/012024 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089154708&doi=10.1088%2f1755-1315%2f479%2f1%2f012024&partnerID=40&md5=c475db2a5893f53e5128412f91b6563b |
description |
Greenhouse effect is the serious environmental issue whereby the gaseous component involved is dangerous. One of the gases that contributed to atmosphere is carbon dioxide (CO2), in which is more than 80%, followed by methane and nitrous oxide that resulted from human activities, industrial sector and transportation. Activated carbon (AC) is the best adsorption technology due to simple design and ability to capture carbon dioxide efficiently. This paper was aimed to produce activated carbon derived from waste material, to determine adsorption rate at different pressures and temperatures and to relate adsorption kinetics and isotherms equilibrium to describe adsorption processes. Palm Kernel Shell (PKS) was selected as raw material to produce AC. Char was produced via carbonization process at 700 °C ± 20 °C for 2 h with 10 °C/min heating rate under inert gas flow. The sample is then grinded and sieved to 0.65mm to 0.8mm, followed by chemical treatment by using potassium hydroxide with ratio of 1:1 and directly undergoing microwave treatment. Adsorption rate performances were investigated by different temperatures of 25 °C and 10 °C and pressures of 5, 15 and 25 bar. The sample were characterized by thermo-gravimetric analysis, surface area analysis, and ultimate analysis. AC-PKS shows the highest surface area. As a result, increase in pressure led to increase in CO2 adsorption while decrease in temperature in CO2 adsorption. In conclusion, the findings revealed that the potential of AC-PKS to capture CO2 in order to enhance environmental sustainability and economically. © Published under licence by IOP Publishing Ltd. |
publisher |
Institute of Physics Publishing |
issn |
17551307 |
language |
English |
format |
Conference paper |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677896253440000 |