Numerical computation for prediction of grain growth on stainless steel 316L

This research aims to predict the grain size growth using numerical computation. The material to be investigated is stainless steel 316L (SS316L). The mathematical modeling is derived into two cases, namely with the absence of precipitate (free growth) and with the presence of growing precipitates....

Full description

Bibliographic Details
Published in:IOP Conference Series: Materials Science and Engineering
Main Author: Muhammad N.; Manurung Y.H.P.; Mat M.F.; Abdul Ghani M.S.; Graf M.; Adams T.-E.; Kassim K.; Adenan S.
Format: Conference paper
Language:English
Published: Institute of Physics Publishing 2020
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087478038&doi=10.1088%2f1757-899X%2f834%2f1%2f012037&partnerID=40&md5=9e52e44835f9f5e8aaadf6cbbe167394
id 2-s2.0-85087478038
spelling 2-s2.0-85087478038
Muhammad N.; Manurung Y.H.P.; Mat M.F.; Abdul Ghani M.S.; Graf M.; Adams T.-E.; Kassim K.; Adenan S.
Numerical computation for prediction of grain growth on stainless steel 316L
2020
IOP Conference Series: Materials Science and Engineering
834
1
10.1088/1757-899X/834/1/012037
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087478038&doi=10.1088%2f1757-899X%2f834%2f1%2f012037&partnerID=40&md5=9e52e44835f9f5e8aaadf6cbbe167394
This research aims to predict the grain size growth using numerical computation. The material to be investigated is stainless steel 316L (SS316L). The mathematical modeling is derived into two cases, namely with the absence of precipitate (free growth) and with the presence of growing precipitates. The numerical computation involves ordinary differential equation using Runge-Kutta 4th order written with FORTRAN language. The experimental verification is carried out by using quenching and deformation dilatometers. It can be concluded that modified kinetic constant (Mo∗) should be defined differently for certain temperature range. © 2020 IOP Publishing Ltd. All rights reserved.
Institute of Physics Publishing
17578981
English
Conference paper
All Open Access; Bronze Open Access
author Muhammad N.; Manurung Y.H.P.; Mat M.F.; Abdul Ghani M.S.; Graf M.; Adams T.-E.; Kassim K.; Adenan S.
spellingShingle Muhammad N.; Manurung Y.H.P.; Mat M.F.; Abdul Ghani M.S.; Graf M.; Adams T.-E.; Kassim K.; Adenan S.
Numerical computation for prediction of grain growth on stainless steel 316L
author_facet Muhammad N.; Manurung Y.H.P.; Mat M.F.; Abdul Ghani M.S.; Graf M.; Adams T.-E.; Kassim K.; Adenan S.
author_sort Muhammad N.; Manurung Y.H.P.; Mat M.F.; Abdul Ghani M.S.; Graf M.; Adams T.-E.; Kassim K.; Adenan S.
title Numerical computation for prediction of grain growth on stainless steel 316L
title_short Numerical computation for prediction of grain growth on stainless steel 316L
title_full Numerical computation for prediction of grain growth on stainless steel 316L
title_fullStr Numerical computation for prediction of grain growth on stainless steel 316L
title_full_unstemmed Numerical computation for prediction of grain growth on stainless steel 316L
title_sort Numerical computation for prediction of grain growth on stainless steel 316L
publishDate 2020
container_title IOP Conference Series: Materials Science and Engineering
container_volume 834
container_issue 1
doi_str_mv 10.1088/1757-899X/834/1/012037
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087478038&doi=10.1088%2f1757-899X%2f834%2f1%2f012037&partnerID=40&md5=9e52e44835f9f5e8aaadf6cbbe167394
description This research aims to predict the grain size growth using numerical computation. The material to be investigated is stainless steel 316L (SS316L). The mathematical modeling is derived into two cases, namely with the absence of precipitate (free growth) and with the presence of growing precipitates. The numerical computation involves ordinary differential equation using Runge-Kutta 4th order written with FORTRAN language. The experimental verification is carried out by using quenching and deformation dilatometers. It can be concluded that modified kinetic constant (Mo∗) should be defined differently for certain temperature range. © 2020 IOP Publishing Ltd. All rights reserved.
publisher Institute of Physics Publishing
issn 17578981
language English
format Conference paper
accesstype All Open Access; Bronze Open Access
record_format scopus
collection Scopus
_version_ 1792585530243809280