Estimation of missing values in air pollution dataset by using various imputation methods
The aim of this study is to determine the best imputation method to fill in the various gaps of missing values in air pollution dataset. Ten imputation methods such as Series Mean, Linear Interpolation, Mean Nearest Neighbour, Expectation Maximization, Markov Chain Monte Carlo, 12-hours Moving Avera...
Published in: | International Journal of Conservation Science |
---|---|
Main Author: | Sukatis F.F.; Noor N.M.; Zakaria N.A.; Ul-Saufie A.Z.; Suwardi A. |
Format: | Article |
Language: | English |
Published: |
Alexandru Ioan Cuza University of Iasi
2019
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087395821&partnerID=40&md5=a921f877d0da2d9d3c0a31ace6b34297 |
Similar Items
-
Prediction of missing data in rainfall dataset by using simple statistical method
by: Mohd Jafri I.A.; Noor N.M.; Ul-Saufie A.Z.; Suwardi A.
Published: (2020) -
Identifying Missing Data Mechanisms Among Incomplete Air Pollution Datasets in Malaysia
by: Libasin Z.; Ul-Saufie A.Z.; Ahmat H.; Shaziayani W.N.; Al-Jumeily D.
Published: (2024) -
Comparison of single and mice imputation methods for missing values: A simulation study
by: Pauzi N.A.M.; Wah Y.B.; Deni S.M.; Rahim S.K.N.A.; Suhartono
Published: (2021) -
A comparison of model-based imputation methods for handling missing predictor values in a linear regression model: A simulation study
by: Hasan H.; Ahmad S.; Osman B.M.; Sapri S.; Othman N.
Published: (2017) -
Time Series Data and Recent Imputation Techniques for Missing Data: A Review
by: Zainuddin A.; Hairuddin M.A.; Yassin A.I.M.; Latiff Z.I.A.; Azhar A.
Published: (2022)