Summary: | This paper investigates the free vibration characteristics of laminate composite beam for various lamination schemes and under various boundary conditions. A beam model with the aspect ratio (length to thickness) of 25 to 150 made of carbon/ epoxy laminates under free vibration were constructed using a commercially available finite element software (ANSYS). The varied parameters are the lamination schemes (cross ply, angle ply and unidirectional ply) and boundary conditions (Clamp-Free (C-F), Clamp-Clamp (C-C), Clamp-Hanger (C-H), Free-Free (F-F) and Hanger-Hanger (H-H) ). For each case, finite element simulations were performed and the natural frequencies were determined. Mode shapes were also analyzed to observe the beam's deformation behavior. Results showed that increasing aspect ratio will decrease natural frequencies for the first seven mode shapes. In terms of lamination scheme, the unidirectional ply produced the highest frequency (34.26 Hz), followed by cross ply (34.05 Hz) and angle ply (13.60 Hz) at the aspect ratio of 25. In terms of boundary conditions, the Hanger-Hanger boundary condition produced the highest natural frequency (2272.52 Hz) at the aspect ratio of 25, while Clamped-Free boundary condition produced the lowest frequency (2.28 Hz) at the aspect ratio of 150. In general, it can be concluded that the current study is useful and has contributed significant knowledge to better understand of effect of various fiber orientations and boundary conditions on the natural frequencies of laminated composite beam. © 2018 Authors.
|