Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study

Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5...

Full description

Bibliographic Details
Published in:Environmental Pollution
Main Author: Arku R.E.; Brauer M.; Ahmed S.H.; AlHabib K.F.; Avezum Á.; Bo J.; Choudhury T.; Dans A.M.; Gupta R.; Iqbal R.; Ismail N.; Kelishadi R.; Khatib R.; Koon T.; Kumar R.; Lanas F.; Lear S.A.; Wei L.; Lopez-Jaramillo P.; Mohan V.; Poirier P.; Puoane T.; Rangarajan S.; Rosengren A.; Soman B.; Caklili O.T.; Yang S.; Yeates K.; Yin L.; Yusoff K.; Zatoński T.; Yusuf S.; Hystad P.
Format: Article
Language:English
Published: Elsevier Ltd 2020
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081014514&doi=10.1016%2fj.envpol.2020.114197&partnerID=40&md5=94deabfa3c19d6a7851aa1d36e95a34f
id 2-s2.0-85081014514
spelling 2-s2.0-85081014514
Arku R.E.; Brauer M.; Ahmed S.H.; AlHabib K.F.; Avezum Á.; Bo J.; Choudhury T.; Dans A.M.; Gupta R.; Iqbal R.; Ismail N.; Kelishadi R.; Khatib R.; Koon T.; Kumar R.; Lanas F.; Lear S.A.; Wei L.; Lopez-Jaramillo P.; Mohan V.; Poirier P.; Puoane T.; Rangarajan S.; Rosengren A.; Soman B.; Caklili O.T.; Yang S.; Yeates K.; Yin L.; Yusoff K.; Zatoński T.; Yusuf S.; Hystad P.
Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
2020
Environmental Pollution
262

10.1016/j.envpol.2020.114197
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081014514&doi=10.1016%2fj.envpol.2020.114197&partnerID=40&md5=94deabfa3c19d6a7851aa1d36e95a34f
Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5 and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM2.5 exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM2.5 exposure ranged from 3 to 97 μg/m3 across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m3 increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM2.5 > 62 μg/m3) compared to the first (PM2.5 < 14 μg/m3) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: −0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: −0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (−0.51 mmHg; 95% CI: −0.99, −0.03) and diastolic (−0.46 mmHg; 95% CI: −0.75, −0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM2.5 was associated with increased BP and hypertension while there were small inverse associations with HAP. © 2020 Elsevier Ltd
Elsevier Ltd
02697491
English
Article
All Open Access; Green Open Access
author Arku R.E.; Brauer M.; Ahmed S.H.; AlHabib K.F.; Avezum Á.; Bo J.; Choudhury T.; Dans A.M.; Gupta R.; Iqbal R.; Ismail N.; Kelishadi R.; Khatib R.; Koon T.; Kumar R.; Lanas F.; Lear S.A.; Wei L.; Lopez-Jaramillo P.; Mohan V.; Poirier P.; Puoane T.; Rangarajan S.; Rosengren A.; Soman B.; Caklili O.T.; Yang S.; Yeates K.; Yin L.; Yusoff K.; Zatoński T.; Yusuf S.; Hystad P.
spellingShingle Arku R.E.; Brauer M.; Ahmed S.H.; AlHabib K.F.; Avezum Á.; Bo J.; Choudhury T.; Dans A.M.; Gupta R.; Iqbal R.; Ismail N.; Kelishadi R.; Khatib R.; Koon T.; Kumar R.; Lanas F.; Lear S.A.; Wei L.; Lopez-Jaramillo P.; Mohan V.; Poirier P.; Puoane T.; Rangarajan S.; Rosengren A.; Soman B.; Caklili O.T.; Yang S.; Yeates K.; Yin L.; Yusoff K.; Zatoński T.; Yusuf S.; Hystad P.
Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
author_facet Arku R.E.; Brauer M.; Ahmed S.H.; AlHabib K.F.; Avezum Á.; Bo J.; Choudhury T.; Dans A.M.; Gupta R.; Iqbal R.; Ismail N.; Kelishadi R.; Khatib R.; Koon T.; Kumar R.; Lanas F.; Lear S.A.; Wei L.; Lopez-Jaramillo P.; Mohan V.; Poirier P.; Puoane T.; Rangarajan S.; Rosengren A.; Soman B.; Caklili O.T.; Yang S.; Yeates K.; Yin L.; Yusoff K.; Zatoński T.; Yusuf S.; Hystad P.
author_sort Arku R.E.; Brauer M.; Ahmed S.H.; AlHabib K.F.; Avezum Á.; Bo J.; Choudhury T.; Dans A.M.; Gupta R.; Iqbal R.; Ismail N.; Kelishadi R.; Khatib R.; Koon T.; Kumar R.; Lanas F.; Lear S.A.; Wei L.; Lopez-Jaramillo P.; Mohan V.; Poirier P.; Puoane T.; Rangarajan S.; Rosengren A.; Soman B.; Caklili O.T.; Yang S.; Yeates K.; Yin L.; Yusoff K.; Zatoński T.; Yusuf S.; Hystad P.
title Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
title_short Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
title_full Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
title_fullStr Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
title_full_unstemmed Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
title_sort Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
publishDate 2020
container_title Environmental Pollution
container_volume 262
container_issue
doi_str_mv 10.1016/j.envpol.2020.114197
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081014514&doi=10.1016%2fj.envpol.2020.114197&partnerID=40&md5=94deabfa3c19d6a7851aa1d36e95a34f
description Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5 and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM2.5 exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM2.5 exposure ranged from 3 to 97 μg/m3 across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m3 increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM2.5 > 62 μg/m3) compared to the first (PM2.5 < 14 μg/m3) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: −0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: −0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (−0.51 mmHg; 95% CI: −0.99, −0.03) and diastolic (−0.46 mmHg; 95% CI: −0.75, −0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM2.5 was associated with increased BP and hypertension while there were small inverse associations with HAP. © 2020 Elsevier Ltd
publisher Elsevier Ltd
issn 02697491
language English
format Article
accesstype All Open Access; Green Open Access
record_format scopus
collection Scopus
_version_ 1814778506803937280