Heterogeneous fenton-like reaction using Fe3-xMnxO4-MKSF composite catalyst for degradation of acid orange II dye

The selection of a good catalyst support is crucial in contributing towards the enhancement catalytic activity of a catalyst. Therefore, in this study, the influence of montmorillonite KSF (MKSF) clay loading in relation with catalytic performance of the resultant composite catalyst has been investi...

Full description

Bibliographic Details
Published in:Journal of Physics: Conference Series
Main Author: Alrozi R.; Zubir N.A.; Amir N.; Abdul Rahman N.N.A.; Kamaruddin M.A.
Format: Conference paper
Language:English
Published: Institute of Physics Publishing 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077790135&doi=10.1088%2f1742-6596%2f1349%2f1%2f012142&partnerID=40&md5=557c86391a7897b1c7e6d282f774a2e2
Description
Summary:The selection of a good catalyst support is crucial in contributing towards the enhancement catalytic activity of a catalyst. Therefore, in this study, the influence of montmorillonite KSF (MKSF) clay loading in relation with catalytic performance of the resultant composite catalyst has been investigated. The MKSF clay loading were varied at x = 20, 40, 60 and 80 wt%, respectively. Interestingly, Fe3-0.3Mn0.3O4-MKSF(40wt%) has shown greater catalytic performance up to 98% of acid orange II (AOII) dye removal in comparison to the Fe3-0.3Mn0.3O4 and Fe3O4 catalysts. The AOII degradation kinetic using Fe3-0.3Mn0.3O4-MKSF(40wt%) was fitted well with first-order reaction kinetic and the reaction rate increased in the order of Fe3O4>Fe3-0.3Mn0.3O4>Fe3-0.3Mn0.3O4-MKSF(40wt%). It also demonstrated in the work that Fe3-0.3Mn0.3O4-MKSF(40wt%) catalyst can be reused several times without affecting its efficiency. Thus, it can be suggested that MKSF clay as catalyst support played a significant role in enhancing the overall catalytic performance of Fe3-0.3Mn0.3O4 catalyst during the heterogeneous Fenton-line reaction as well as the degradation kinetics of the AOII solutions. © Published under licence by IOP Publishing Ltd.
ISSN:17426588
DOI:10.1088/1742-6596/1349/1/012142