Texture classification using spectral entropy of acoustic signal generated by a human echolocator

Human echolocation is a biological process wherein the human emits a punctuated acoustic signal, and the ear analyzes the echo in order to perceive the surroundings. The peculiar acoustic signal is normally produced by clicking inside the mouth. This paper utilized this unique acoustic signal from a...

Full description

Bibliographic Details
Published in:Entropy
Main Author: Abdullah R.S.A.R.; Saleh N.L.; Rahman S.M.S.A.; Zamri N.S.; Rashid N.E.A.
Format: Article
Language:English
Published: MDPI AG 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074026743&doi=10.3390%2fe21100963&partnerID=40&md5=4cb9313dea2f43e3e288dcca5cc3a3ef
id 2-s2.0-85074026743
spelling 2-s2.0-85074026743
Abdullah R.S.A.R.; Saleh N.L.; Rahman S.M.S.A.; Zamri N.S.; Rashid N.E.A.
Texture classification using spectral entropy of acoustic signal generated by a human echolocator
2019
Entropy
21
10
10.3390/e21100963
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074026743&doi=10.3390%2fe21100963&partnerID=40&md5=4cb9313dea2f43e3e288dcca5cc3a3ef
Human echolocation is a biological process wherein the human emits a punctuated acoustic signal, and the ear analyzes the echo in order to perceive the surroundings. The peculiar acoustic signal is normally produced by clicking inside the mouth. This paper utilized this unique acoustic signal from a human echolocator as a source of transmitted signal in a synthetic human echolocation technique. Thus, the aim of the paper was to extract information from the echo signal and develop a classification scheme to identify signals reflected from different textures at various distance. The scheme was based on spectral entropy extracted from Mel-scale filtering output in theMel-frequency cepstrum coefficient of a reflected echo signal. The classification process involved data mining, features extraction, clustering, and classifier validation. The reflected echo signals were obtained via an experimental setup resembling a human echolocation scenario, configured for synthetic data collection. Unlike in typical speech signals, extracted entropy from the formant characteristics was likely not visible for the human mouth-click signals. Instead, multiple peak spectral features derived from the synthesis signal of the mouth-click were assumed as the entropy obtained from theMel-scale filtering output. To realize the classification process, K-means clustering and K-nearest neighbor processes were employed. Moreover, the impacts of sound propagation toward the extracted spectral entropy used in the classification outcome were also investigated. The outcomes of the classifier performance herein indicated that spectral entropy is essential for human echolocation. © 2019 by the authors.
MDPI AG
10994300
English
Article
All Open Access; Gold Open Access; Green Open Access
author Abdullah R.S.A.R.; Saleh N.L.; Rahman S.M.S.A.; Zamri N.S.; Rashid N.E.A.
spellingShingle Abdullah R.S.A.R.; Saleh N.L.; Rahman S.M.S.A.; Zamri N.S.; Rashid N.E.A.
Texture classification using spectral entropy of acoustic signal generated by a human echolocator
author_facet Abdullah R.S.A.R.; Saleh N.L.; Rahman S.M.S.A.; Zamri N.S.; Rashid N.E.A.
author_sort Abdullah R.S.A.R.; Saleh N.L.; Rahman S.M.S.A.; Zamri N.S.; Rashid N.E.A.
title Texture classification using spectral entropy of acoustic signal generated by a human echolocator
title_short Texture classification using spectral entropy of acoustic signal generated by a human echolocator
title_full Texture classification using spectral entropy of acoustic signal generated by a human echolocator
title_fullStr Texture classification using spectral entropy of acoustic signal generated by a human echolocator
title_full_unstemmed Texture classification using spectral entropy of acoustic signal generated by a human echolocator
title_sort Texture classification using spectral entropy of acoustic signal generated by a human echolocator
publishDate 2019
container_title Entropy
container_volume 21
container_issue 10
doi_str_mv 10.3390/e21100963
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074026743&doi=10.3390%2fe21100963&partnerID=40&md5=4cb9313dea2f43e3e288dcca5cc3a3ef
description Human echolocation is a biological process wherein the human emits a punctuated acoustic signal, and the ear analyzes the echo in order to perceive the surroundings. The peculiar acoustic signal is normally produced by clicking inside the mouth. This paper utilized this unique acoustic signal from a human echolocator as a source of transmitted signal in a synthetic human echolocation technique. Thus, the aim of the paper was to extract information from the echo signal and develop a classification scheme to identify signals reflected from different textures at various distance. The scheme was based on spectral entropy extracted from Mel-scale filtering output in theMel-frequency cepstrum coefficient of a reflected echo signal. The classification process involved data mining, features extraction, clustering, and classifier validation. The reflected echo signals were obtained via an experimental setup resembling a human echolocation scenario, configured for synthetic data collection. Unlike in typical speech signals, extracted entropy from the formant characteristics was likely not visible for the human mouth-click signals. Instead, multiple peak spectral features derived from the synthesis signal of the mouth-click were assumed as the entropy obtained from theMel-scale filtering output. To realize the classification process, K-means clustering and K-nearest neighbor processes were employed. Moreover, the impacts of sound propagation toward the extracted spectral entropy used in the classification outcome were also investigated. The outcomes of the classifier performance herein indicated that spectral entropy is essential for human echolocation. © 2019 by the authors.
publisher MDPI AG
issn 10994300
language English
format Article
accesstype All Open Access; Gold Open Access; Green Open Access
record_format scopus
collection Scopus
_version_ 1820775467364384768