Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents

Background: A phytochemical study on medicinal plants used for the treatment of fever and malaria in Africa yielded metabolites with potential antiplasmodial activity, many of which are Anthraquinones (AQ). AQs have similar sub-structure as naphthoquinones and xanthones, which were previously report...

Full description

Bibliographic Details
Published in:Letters in Drug Design and Discovery
Main Author: Osman C.P.; Ismail N.H.; Widyawaruyanti A.; Imran S.; Tumewu L.; Choo C.Y.; Ideris S.
Format: Letter
Language:English
Published: Bentham Science Publishers B.V. 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067273854&doi=10.2174%2f1570180815666180607085102&partnerID=40&md5=57333740f543dd72391bdfbb80e7ab72
id 2-s2.0-85067273854
spelling 2-s2.0-85067273854
Osman C.P.; Ismail N.H.; Widyawaruyanti A.; Imran S.; Tumewu L.; Choo C.Y.; Ideris S.
Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
2019
Letters in Drug Design and Discovery
16
3
10.2174/1570180815666180607085102
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067273854&doi=10.2174%2f1570180815666180607085102&partnerID=40&md5=57333740f543dd72391bdfbb80e7ab72
Background: A phytochemical study on medicinal plants used for the treatment of fever and malaria in Africa yielded metabolites with potential antiplasmodial activity, many of which are Anthraquinones (AQ). AQs have similar sub-structure as naphthoquinones and xanthones, which were previously reported as novel antiplasmodial agents. Objective: The present study aimed to investigate the structural requirements of 9,10-anthraquinones with hydroxy, methoxy and methyl substituents to exert strong antiplasmodial activity and to investigate their possible mode of action. Methods: Thirty-one AQs were synthesized through Friedel-Crafts reaction and assayed for antiplasmodial activity in vitro against Plasmodium falciparum (3D7). The selected compounds were tested for toxicity and probed for their mode of action against β-hematin dimerization through HRP2 and lipid catalyses. The most active compounds were subjected to a docking study using AutoDock 4.2. Results: The active AQs have similar common structural characteristics. However, it is difficult to establish a structure-activity relationship as certain compounds are active despite the absence of the structural features exhibited by other active AQs. They have either ortho- or meta-arranged substituents and one free hydroxyl and/or carbonyl groups. When C-6 is substituted with a methyl group, the activity of AQs generally increased. 1,3-DihydroxyAQ (15) showed good antiplasmodial activity with an IC50 value of 1.08 μM, and when C-6 was substituted with a methyl group, 1,3-dihydroxy-6-methylAQ (24) showed stronger antiplasmodial activity with an IC50 value of 0.02μM, with better selectivity index. Compounds 15 and 24 showed strong HRP2 activity and mild toxicity against hepatocyte cells. Molecular docking studies showed that the hydroxyl groups at the ortho (23) and meta (24) positions are able to form hydrogen bonds with heme, of 3.49 A and 3.02 A, respectively. Conclusion: The activity of 1,3-dihydroxy-6-methylAQ (24) could be due to their inhibition against the free heme dimerization by inhibiting the HRP2 protein. It was further observed that the anthraquinone moiety of compound 24 bind in parallel to the heme ring through hydrophobic interactions, thus preventing crystallization of heme into hemozoin. © 2019 Bentham Science Publishers.
Bentham Science Publishers B.V.
15701808
English
Letter
All Open Access; Green Open Access
author Osman C.P.; Ismail N.H.; Widyawaruyanti A.; Imran S.; Tumewu L.; Choo C.Y.; Ideris S.
spellingShingle Osman C.P.; Ismail N.H.; Widyawaruyanti A.; Imran S.; Tumewu L.; Choo C.Y.; Ideris S.
Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
author_facet Osman C.P.; Ismail N.H.; Widyawaruyanti A.; Imran S.; Tumewu L.; Choo C.Y.; Ideris S.
author_sort Osman C.P.; Ismail N.H.; Widyawaruyanti A.; Imran S.; Tumewu L.; Choo C.Y.; Ideris S.
title Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
title_short Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
title_full Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
title_fullStr Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
title_full_unstemmed Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
title_sort Evaluation of a series of 9,10-anthraquinones as antiplasmodial agents
publishDate 2019
container_title Letters in Drug Design and Discovery
container_volume 16
container_issue 3
doi_str_mv 10.2174/1570180815666180607085102
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067273854&doi=10.2174%2f1570180815666180607085102&partnerID=40&md5=57333740f543dd72391bdfbb80e7ab72
description Background: A phytochemical study on medicinal plants used for the treatment of fever and malaria in Africa yielded metabolites with potential antiplasmodial activity, many of which are Anthraquinones (AQ). AQs have similar sub-structure as naphthoquinones and xanthones, which were previously reported as novel antiplasmodial agents. Objective: The present study aimed to investigate the structural requirements of 9,10-anthraquinones with hydroxy, methoxy and methyl substituents to exert strong antiplasmodial activity and to investigate their possible mode of action. Methods: Thirty-one AQs were synthesized through Friedel-Crafts reaction and assayed for antiplasmodial activity in vitro against Plasmodium falciparum (3D7). The selected compounds were tested for toxicity and probed for their mode of action against β-hematin dimerization through HRP2 and lipid catalyses. The most active compounds were subjected to a docking study using AutoDock 4.2. Results: The active AQs have similar common structural characteristics. However, it is difficult to establish a structure-activity relationship as certain compounds are active despite the absence of the structural features exhibited by other active AQs. They have either ortho- or meta-arranged substituents and one free hydroxyl and/or carbonyl groups. When C-6 is substituted with a methyl group, the activity of AQs generally increased. 1,3-DihydroxyAQ (15) showed good antiplasmodial activity with an IC50 value of 1.08 μM, and when C-6 was substituted with a methyl group, 1,3-dihydroxy-6-methylAQ (24) showed stronger antiplasmodial activity with an IC50 value of 0.02μM, with better selectivity index. Compounds 15 and 24 showed strong HRP2 activity and mild toxicity against hepatocyte cells. Molecular docking studies showed that the hydroxyl groups at the ortho (23) and meta (24) positions are able to form hydrogen bonds with heme, of 3.49 A and 3.02 A, respectively. Conclusion: The activity of 1,3-dihydroxy-6-methylAQ (24) could be due to their inhibition against the free heme dimerization by inhibiting the HRP2 protein. It was further observed that the anthraquinone moiety of compound 24 bind in parallel to the heme ring through hydrophobic interactions, thus preventing crystallization of heme into hemozoin. © 2019 Bentham Science Publishers.
publisher Bentham Science Publishers B.V.
issn 15701808
language English
format Letter
accesstype All Open Access; Green Open Access
record_format scopus
collection Scopus
_version_ 1798286509821919232