A complete solution of 3-step hamiltonian grids and torus graphs
For a (p; q)-graph G, if the vertices of G can be arranged in a sequence v1; v2;...; vp such that for each i = 1; 2;...; p - 1, the distance from vi to vi+1 equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if d(vp; v1) = k, the sequence v1; v2;...; vp; v1 is called a k-s...
Published in: | Thai Journal of Mathematics |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Chiang Mai University
2019
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066785559&partnerID=40&md5=71dfc9b7c8aa6daf379c4add328a9826 |
id |
2-s2.0-85066785559 |
---|---|
spelling |
2-s2.0-85066785559 Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M. A complete solution of 3-step hamiltonian grids and torus graphs 2019 Thai Journal of Mathematics 17 1 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066785559&partnerID=40&md5=71dfc9b7c8aa6daf379c4add328a9826 For a (p; q)-graph G, if the vertices of G can be arranged in a sequence v1; v2;...; vp such that for each i = 1; 2;...; p - 1, the distance from vi to vi+1 equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if d(vp; v1) = k, the sequence v1; v2;...; vp; v1 is called a k-step Hamiltonian tour and G is k-step Hamiltonian. In this paper we completely determine which rectangular grid graphs are 3-step Hamiltonian and show that the torus graph Cm×Cn is 3-step Hamiltonian for all m ≥ 3; n ≥ 5. © 2019 by the Mathematical Association of Thailand. Chiang Mai University 16860209 English Article |
author |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M. |
spellingShingle |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M. A complete solution of 3-step hamiltonian grids and torus graphs |
author_facet |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M. |
author_sort |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M. |
title |
A complete solution of 3-step hamiltonian grids and torus graphs |
title_short |
A complete solution of 3-step hamiltonian grids and torus graphs |
title_full |
A complete solution of 3-step hamiltonian grids and torus graphs |
title_fullStr |
A complete solution of 3-step hamiltonian grids and torus graphs |
title_full_unstemmed |
A complete solution of 3-step hamiltonian grids and torus graphs |
title_sort |
A complete solution of 3-step hamiltonian grids and torus graphs |
publishDate |
2019 |
container_title |
Thai Journal of Mathematics |
container_volume |
17 |
container_issue |
1 |
doi_str_mv |
|
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066785559&partnerID=40&md5=71dfc9b7c8aa6daf379c4add328a9826 |
description |
For a (p; q)-graph G, if the vertices of G can be arranged in a sequence v1; v2;...; vp such that for each i = 1; 2;...; p - 1, the distance from vi to vi+1 equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if d(vp; v1) = k, the sequence v1; v2;...; vp; v1 is called a k-step Hamiltonian tour and G is k-step Hamiltonian. In this paper we completely determine which rectangular grid graphs are 3-step Hamiltonian and show that the torus graph Cm×Cn is 3-step Hamiltonian for all m ≥ 3; n ≥ 5. © 2019 by the Mathematical Association of Thailand. |
publisher |
Chiang Mai University |
issn |
16860209 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1818940561691770880 |