A complete solution of 3-step hamiltonian grids and torus graphs

For a (p; q)-graph G, if the vertices of G can be arranged in a sequence v1; v2;...; vp such that for each i = 1; 2;...; p - 1, the distance from vi to vi+1 equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if d(vp; v1) = k, the sequence v1; v2;...; vp; v1 is called a k-s...

Full description

Bibliographic Details
Published in:Thai Journal of Mathematics
Main Author: Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
Format: Article
Language:English
Published: Chiang Mai University 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066785559&partnerID=40&md5=71dfc9b7c8aa6daf379c4add328a9826
id 2-s2.0-85066785559
spelling 2-s2.0-85066785559
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
A complete solution of 3-step hamiltonian grids and torus graphs
2019
Thai Journal of Mathematics
17
1

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066785559&partnerID=40&md5=71dfc9b7c8aa6daf379c4add328a9826
For a (p; q)-graph G, if the vertices of G can be arranged in a sequence v1; v2;...; vp such that for each i = 1; 2;...; p - 1, the distance from vi to vi+1 equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if d(vp; v1) = k, the sequence v1; v2;...; vp; v1 is called a k-step Hamiltonian tour and G is k-step Hamiltonian. In this paper we completely determine which rectangular grid graphs are 3-step Hamiltonian and show that the torus graph Cm×Cn is 3-step Hamiltonian for all m ≥ 3; n ≥ 5. © 2019 by the Mathematical Association of Thailand.
Chiang Mai University
16860209
English
Article

author Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
spellingShingle Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
A complete solution of 3-step hamiltonian grids and torus graphs
author_facet Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
author_sort Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
title A complete solution of 3-step hamiltonian grids and torus graphs
title_short A complete solution of 3-step hamiltonian grids and torus graphs
title_full A complete solution of 3-step hamiltonian grids and torus graphs
title_fullStr A complete solution of 3-step hamiltonian grids and torus graphs
title_full_unstemmed A complete solution of 3-step hamiltonian grids and torus graphs
title_sort A complete solution of 3-step hamiltonian grids and torus graphs
publishDate 2019
container_title Thai Journal of Mathematics
container_volume 17
container_issue 1
doi_str_mv
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066785559&partnerID=40&md5=71dfc9b7c8aa6daf379c4add328a9826
description For a (p; q)-graph G, if the vertices of G can be arranged in a sequence v1; v2;...; vp such that for each i = 1; 2;...; p - 1, the distance from vi to vi+1 equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if d(vp; v1) = k, the sequence v1; v2;...; vp; v1 is called a k-step Hamiltonian tour and G is k-step Hamiltonian. In this paper we completely determine which rectangular grid graphs are 3-step Hamiltonian and show that the torus graph Cm×Cn is 3-step Hamiltonian for all m ≥ 3; n ≥ 5. © 2019 by the Mathematical Association of Thailand.
publisher Chiang Mai University
issn 16860209
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1818940561691770880