Evaluating aspect-based sentiment classification on Twitter hate speech using neural networks and word embedding features
In this paper, a neural network is proposed to analyse Twitter sentiment classification for the Twitter domain. The study examines and evaluates the performance of neural networks with word embedding features in Twitter sentiment classification. Four benchmark datasets were used to represent differe...
發表在: | Frontiers in Artificial Intelligence and Applications |
---|---|
主要作者: | Zainuddin N.; Selamat A.; Ibrahim R. |
格式: | Conference paper |
語言: | English |
出版: |
IOS Press BV
2018
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063377228&doi=10.3233%2f978-1-61499-900-3-723&partnerID=40&md5=06b19da482304287abdd18fe2e76983a |
相似書籍
-
Hate crime on twitter: Aspect-based sentiment analysis approach
由: Zainuddin N.; Selamat A.; Ibrahim R.
出版: (2019) -
The Best Malaysian Airline Companies Visualization through Bilingual Twitter Sentiment Analysis: A Machine Learning Classification
由: 2-s2.0-85128946535
出版: (2022) -
Utilising Tiktok Features for Speech Communication
由: Tan K.H.; Rajendran A.; Philip B.; Alias J.; Saad S.M.; Mohamad Z.
出版: (2024) -
Convolutional Neural Network featuring VGG-16 Model for Glioma Classification
由: 2-s2.0-85139452252
出版: (2022) -
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
由: Zhang J.; Maskat R.
出版: (2024)