Non-convergence partitioning strategy for solving van der Pol's equations
Partitioning is a strategy that will reduce computational cost. Starting with all equations be treated as non-stiff, this strategy will divide the equations into the stiff and nonstiff subsystem. The non-convergence partitioning strategy will determine equations that caused instability, and put the...
Published in: | AIP Conference Proceedings |
---|---|
Main Author: | Othman K.I.; Suleiman M.; Ibrahim Z.B. |
Format: | Conference paper |
Language: | English |
Published: |
American Institute of Physics Inc.
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051134473&doi=10.1063%2f1.5045407&partnerID=40&md5=30991a275cbd5f05b09ee9d814a99739 |
Similar Items
-
Numerical Solution of Van der Pol Equation via Fix and Variable Step Size Methods
by: Mutalib N.J.A.; Rosli N.; Ariffin N.A.N.
Published: (2023) -
Componentwise partitioning using multistep block method for solving ordinary differential equations
by: Othman K.I.; Ibrahim Z.B.; Azeany N.A.; Suleiman M.
Published: (2013) -
A quantitative comparison of numerical method for solving stiff ordinary differential equations
by: Yatim S.A.M.; Ibrahim Z.B.; Othman K.I.; Suleiman M.B.
Published: (2011) -
Variable order block method for solving second order ordinary differential equations
by: Ibrahim Z.B.; Zainuddin N.; Othman K.I.; Suleiman M.; Zawawi I.S.M.
Published: (2019) -
Constructing trifunctional MoTe2/As van der Waals heterostructures for versatile energy applications
by: Chang Y.H.R.; Yeoh K.H.; Jiang J.; Lim T.L.; Yong Y.S.; Low L.C.; Tuh M.H.
Published: (2022)