Strength Performance of Blended Ash Based Geopolymer Mortar

Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA...

Full description

Bibliographic Details
Published in:E3S Web of Conferences
Main Author: Zahib Z.M.; Kamaruddin K.; Saman H.
Format: Conference paper
Language:English
Published: EDP Sciences 2018
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047762420&doi=10.1051%2fe3sconf%2f20183401016&partnerID=40&md5=58fb9aebac4f57c1703c5bbda6cff116
Description
Summary:Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH. © The Authors, published by EDP Sciences, 2018.
ISSN:22671242
DOI:10.1051/e3sconf/20183401016