Prediction of heart abnormality using MLP network
Heart abnormality does not choose gender, age and races when it strikes. With no warning signs or symptoms, it can result to a sudden death of the patient. Generally, heart's irregular electrical activity is defined as heart abnormality. Via implementation of Multilayer Perceptron (MLP) network...
Published in: | AIP Conference Proceedings |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
American Institute of Physics Inc.
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041928852&doi=10.1063%2f1.5022914&partnerID=40&md5=24934a090e063f2f71d6af3525534271 |
id |
2-s2.0-85041928852 |
---|---|
spelling |
2-s2.0-85041928852 Hashim F.R.; Januar Y.; Mat M.H.; Rizman Z.I.; Awang M.K. Prediction of heart abnormality using MLP network 2018 AIP Conference Proceedings 1930 10.1063/1.5022914 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041928852&doi=10.1063%2f1.5022914&partnerID=40&md5=24934a090e063f2f71d6af3525534271 Heart abnormality does not choose gender, age and races when it strikes. With no warning signs or symptoms, it can result to a sudden death of the patient. Generally, heart's irregular electrical activity is defined as heart abnormality. Via implementation of Multilayer Perceptron (MLP) network, this paper tries to develop a program that allows the detection of heart abnormality activity. Utilizing several training algorithms with Purelin activation function, an amount of heartbeat signals received through the electrocardiogram (ECG) will be employed to condition the MLP network. © 2018 Author(s). American Institute of Physics Inc. 0094243X English Conference paper All Open Access; Bronze Open Access |
author |
Hashim F.R.; Januar Y.; Mat M.H.; Rizman Z.I.; Awang M.K. |
spellingShingle |
Hashim F.R.; Januar Y.; Mat M.H.; Rizman Z.I.; Awang M.K. Prediction of heart abnormality using MLP network |
author_facet |
Hashim F.R.; Januar Y.; Mat M.H.; Rizman Z.I.; Awang M.K. |
author_sort |
Hashim F.R.; Januar Y.; Mat M.H.; Rizman Z.I.; Awang M.K. |
title |
Prediction of heart abnormality using MLP network |
title_short |
Prediction of heart abnormality using MLP network |
title_full |
Prediction of heart abnormality using MLP network |
title_fullStr |
Prediction of heart abnormality using MLP network |
title_full_unstemmed |
Prediction of heart abnormality using MLP network |
title_sort |
Prediction of heart abnormality using MLP network |
publishDate |
2018 |
container_title |
AIP Conference Proceedings |
container_volume |
1930 |
container_issue |
|
doi_str_mv |
10.1063/1.5022914 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041928852&doi=10.1063%2f1.5022914&partnerID=40&md5=24934a090e063f2f71d6af3525534271 |
description |
Heart abnormality does not choose gender, age and races when it strikes. With no warning signs or symptoms, it can result to a sudden death of the patient. Generally, heart's irregular electrical activity is defined as heart abnormality. Via implementation of Multilayer Perceptron (MLP) network, this paper tries to develop a program that allows the detection of heart abnormality activity. Utilizing several training algorithms with Purelin activation function, an amount of heartbeat signals received through the electrocardiogram (ECG) will be employed to condition the MLP network. © 2018 Author(s). |
publisher |
American Institute of Physics Inc. |
issn |
0094243X |
language |
English |
format |
Conference paper |
accesstype |
All Open Access; Bronze Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677907084181504 |