Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst
Fatty acid methyl esters (FAME) production from waste cooking oil was successfully carried out using a newly developed heterogeneous biomass-based catalyst. Activated carbon produced from oil palm biomass was calcined with potassium phosphate tri-basics (K3PO4) in order to synthesize a high catalyti...
Published in: | Renewable Energy |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025592826&doi=10.1016%2fj.renene.2017.07.064&partnerID=40&md5=6410d9e0d8d3049d6f6bd5f9b335bca0 |
Summary: | Fatty acid methyl esters (FAME) production from waste cooking oil was successfully carried out using a newly developed heterogeneous biomass-based catalyst. Activated carbon produced from oil palm biomass was calcined with potassium phosphate tri-basics (K3PO4) in order to synthesize a high catalytic heterogeneous catalyst. As it is characterized with substantial surface area of 680 m2/g and basicity amount of 11.21 mmol/g, 98% of FAME yield was achieved under optimum reaction parameters of 5 wt% catalyst loading, 12:1 methanol to oil molar ratio at 60 °C for 4 h. The catalyst was shown to be reusable, with more than 76% FAME yield after 5 consecutive cycles. © 2017 Elsevier Ltd |
---|---|
ISSN: | 9601481 |
DOI: | 10.1016/j.renene.2017.07.064 |