Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel
This paper described the capability of acoustic emission (AE) technique in monitoring the fatigue damage level using unsupervised clustering technique. As fatigue damage is being a major contributing factor to component failure, it is essential to evaluate the level of damage caused by fatigue load...
Published in: | International Journal of Automotive and Mechanical Engineering |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Universiti Malaysia Pahang
2016
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018714218&doi=10.15282%2fijame.13.3.2016.5.0295&partnerID=40&md5=757a28930bc256f8326f15b79ffbd603 |
id |
2-s2.0-85018714218 |
---|---|
spelling |
2-s2.0-85018714218 Mohammad M.; Tajuddin A.; Abdullah S.; Jamaluddin N.; Murat B.I.S. Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel 2016 International Journal of Automotive and Mechanical Engineering 13 3 10.15282/ijame.13.3.2016.5.0295 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018714218&doi=10.15282%2fijame.13.3.2016.5.0295&partnerID=40&md5=757a28930bc256f8326f15b79ffbd603 This paper described the capability of acoustic emission (AE) technique in monitoring the fatigue damage level using unsupervised clustering technique. As fatigue damage is being a major contributing factor to component failure, it is essential to evaluate the level of damage caused by fatigue load in order to prevent the catastrophic failure of the structure. It is a concern in this study to differentiate the AE signals according to the fatigue damage stages by implementing an unsupervised clustering technique. In this study, the AE signals were collected on specimens made of medium carbon steel SAE 1045 that underwent the axial fatigue testing. The test was run at three loading values of 600, 640 and 680 MPa. The pattern behaviour of AE signals was recorded using a piezoelectric sensor in a form of time domain history signal. Later, the AE signals collected were analysed and clustered using K-means technique. Five clusters of K1, K2, K3, K4, and K5 have been found for the specimens subjected to stress value of 600-680 MPa. The optimum numbers of K clusters were determined using the smallest objective function in their group which ranges between 2.6 to 3.0. This pilot investigation shows that it may be useful to estimate the remaining life for a component before it fails. © Universiti Malaysia Pahang Publishing. Universiti Malaysia Pahang 22298649 English Article All Open Access; Gold Open Access; Green Open Access |
author |
Mohammad M.; Tajuddin A.; Abdullah S.; Jamaluddin N.; Murat B.I.S. |
spellingShingle |
Mohammad M.; Tajuddin A.; Abdullah S.; Jamaluddin N.; Murat B.I.S. Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
author_facet |
Mohammad M.; Tajuddin A.; Abdullah S.; Jamaluddin N.; Murat B.I.S. |
author_sort |
Mohammad M.; Tajuddin A.; Abdullah S.; Jamaluddin N.; Murat B.I.S. |
title |
Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
title_short |
Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
title_full |
Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
title_fullStr |
Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
title_full_unstemmed |
Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
title_sort |
Fatigue damage monitoring using un-supervised clustering method of acoustic emission signal on SAE 1045 steel |
publishDate |
2016 |
container_title |
International Journal of Automotive and Mechanical Engineering |
container_volume |
13 |
container_issue |
3 |
doi_str_mv |
10.15282/ijame.13.3.2016.5.0295 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018714218&doi=10.15282%2fijame.13.3.2016.5.0295&partnerID=40&md5=757a28930bc256f8326f15b79ffbd603 |
description |
This paper described the capability of acoustic emission (AE) technique in monitoring the fatigue damage level using unsupervised clustering technique. As fatigue damage is being a major contributing factor to component failure, it is essential to evaluate the level of damage caused by fatigue load in order to prevent the catastrophic failure of the structure. It is a concern in this study to differentiate the AE signals according to the fatigue damage stages by implementing an unsupervised clustering technique. In this study, the AE signals were collected on specimens made of medium carbon steel SAE 1045 that underwent the axial fatigue testing. The test was run at three loading values of 600, 640 and 680 MPa. The pattern behaviour of AE signals was recorded using a piezoelectric sensor in a form of time domain history signal. Later, the AE signals collected were analysed and clustered using K-means technique. Five clusters of K1, K2, K3, K4, and K5 have been found for the specimens subjected to stress value of 600-680 MPa. The optimum numbers of K clusters were determined using the smallest objective function in their group which ranges between 2.6 to 3.0. This pilot investigation shows that it may be useful to estimate the remaining life for a component before it fails. © Universiti Malaysia Pahang Publishing. |
publisher |
Universiti Malaysia Pahang |
issn |
22298649 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775475655475200 |