The performance of re-descending weight based partial robust M-regression methods
The presence of Partial Robust M-Regression (PRM) amongst other Partial Least Squares Regression (PLSR) techniques is mainly to offer a more robust and efficient method than the existing ones when data face outlier problem. PRMis conceptually different from other robust PLSR techniques because it pr...
Published in: | Applied Mathematics and Information Sciences |
---|---|
Main Author: | Mohamad M.; Ramli N.M.; Ghani N.A.M. |
Format: | Article |
Language: | English |
Published: |
Natural Sciences Publishing
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010866458&doi=10.18576%2famis%2f110140&partnerID=40&md5=dae00008a51bc290eff6877be6fe64a2 |
Similar Items
-
Enhancement of partial robust M-regression (PRM) performance using Bisquare weight function
by: Mohamad M.; Ramli N.M.; Mamat N.A.M.; Ahmad S.
Published: (2014) -
The refinement of partial robust M-regression model using winsorized mean and Hampel weight function
by: Mohamad M.; Mamat N.A.M.G.; Ramli N.M.; Ahmad S.
Published: (2015) -
Partial Robust M-Regression Estimator in the Presence of Multicollinearity and Vertical Outliers
by: Noh N.H.M.; Moktar B.; Yusoff S.; Majid M.N.A.
Published: (2020) -
The performance of diagnostic-robust generalized potentials for the identification of multiple high leverage points in linear regression
by: Habshah M.; Norazan M.R.; Imon A.H.M.R.
Published: (2009) -
Files structure management: Re-finding and re-entering data
by: Amran N.; Bahry F.D.S.; Anwar N.
Published: (2015)