Effects of TiO2 addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF3SO2)2) and PVC/PEMA/(LiN(CF3SO2)2-TiO2 films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF3SO2)2 exhibited the highest conductivity of 1.75 × 10-5 Scm-1. The conductivity...

Full description

Bibliographic Details
Published in:AIP Conference Proceedings
Main Author: Subban R.H.Y.; Sukri N.
Format: Conference paper
Language:English
Published: American Institute of Physics Inc. 2015
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006191522&doi=10.1063%2f1.4928821&partnerID=40&md5=6e231b803139245b5e1dba5e85ec241e
Description
Summary:PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF3SO2)2) and PVC/PEMA/(LiN(CF3SO2)2-TiO2 films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF3SO2)2 exhibited the highest conductivity of 1.75 × 10-5 Scm-1. The conductivity of the sample increased to 2.12 × 10-5 Scm-1 and 4.61 × 10-5 Scm-1 when 4 wt. % and 10 wt. % of titanium dioxide (TiO2) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF3SO2)2 composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC). © 2015 AIP Publishing LLC.
ISSN:0094243X
DOI:10.1063/1.4928821