Summary: | Earthquake is a common natural disaster in active tectonic regions. The disaster can induce cascading disasters such as debris flow, mudflow and reactivated old landslides. M 6.0 Ranau earthquake dated on June 05, 2015 coupling with intense and prolonged rainfall caused several mass movements such as debris flow, deep-seated and shallow landslides in Mesilou, Sabah. This study aims at providing a better insight into the use of advanced LiDAR mapping technology for recognizing landslide induced by earthquakes particularly in a vegetated terrain, assessing post event hazard and analyzing its distribution for hazard zonation. We developed the landslide inventory using LiDAR-derived visual analysis method and validated in the field. A landslide inventory map improved with the support of LiDAR derivative data. Finally, landslide inventory was analysed by emphasizing its distribution and density in such a way that it provides clues of risky zone as a result of debris flow. We recommend that mitigation action and risk reduction should be taken place at a transport zone of the channel compared to other zones. This study indicates that modern airborne LiDAR can be a good complementary tool for improving landslide inventory in a complex environment, and an effective tool for rapid regional hazard and risk assessment in the tropics.
|