Handling imbalanced dataset using SVM and k-NN approach
Data mining classification methods are affected when the data is imbalanced, that is, when one class is larger than the other class in size for the case of a two-class dependent variable. Many new methods have been developed to handle imbalanced datasets. In handling a binary classification task, Su...
發表在: | AIP Conference Proceedings |
---|---|
主要作者: | Wah Y.B.; Rahman H.A.A.; He H.; Bulgiba A. |
格式: | Conference paper |
語言: | English |
出版: |
American Institute of Physics Inc.
2016
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984550446&doi=10.1063%2f1.4954536&partnerID=40&md5=1831061d4fefe8f88c4cc686c646a113 |
相似書籍
-
The grading of agarwood oil quality using k-Nearest Neighbor (k-NN)
由: 2-s2.0-84897779629
出版: (2013) -
Classification of Severity Areas in Dengue Control Strategies Using k-Nearest Neighbours (kNN)
由: Azan, et al.
出版: (2024) -
Water Quality Classification Using SVM And XGBoost Method
由: 2-s2.0-85137143735
出版: (2022) -
An analysis on performance of different type classifiers in handling big data sets
由: Mohamad M.; Selamat A.
出版: (2019) -
Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data
由: 2-s2.0-85142097924
出版: (2023)