On friendly index sets of the edge-gluing of complete graph and cycles
Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}|. We say f is friendly if |vf(0)−vf(1)|≤1. We say G is cordia...
Published in: | AKCE International Journal of Graphs and Combinatorics |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Kalasalingam University
2016
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978877393&doi=10.1016%2fj.akcej.2016.06.004&partnerID=40&md5=52adceb47c91bea85f47c48310adddeb |
id |
2-s2.0-84978877393 |
---|---|
spelling |
2-s2.0-84978877393 Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y. On friendly index sets of the edge-gluing of complete graph and cycles 2016 AKCE International Journal of Graphs and Combinatorics 13 2 10.1016/j.akcej.2016.06.004 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978877393&doi=10.1016%2fj.akcej.2016.06.004&partnerID=40&md5=52adceb47c91bea85f47c48310adddeb Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}|. We say f is friendly if |vf(0)−vf(1)|≤1. We say G is cordial if |ef(1)−ef(0)|≤1 for a friendly labeling f. The set FI(G)={|ef(1)−ef(0)|:f is friendly} is called the friendly index set of G. In this paper, we investigate the friendly index sets of the edge-gluing of a complete graph Kn and n copies of cycles C3. The cordiality of the graphs is also determined. © 2016 Kalasalingam University 9728600 English Article All Open Access; Gold Open Access |
author |
Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y. |
spellingShingle |
Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y. On friendly index sets of the edge-gluing of complete graph and cycles |
author_facet |
Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y. |
author_sort |
Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y. |
title |
On friendly index sets of the edge-gluing of complete graph and cycles |
title_short |
On friendly index sets of the edge-gluing of complete graph and cycles |
title_full |
On friendly index sets of the edge-gluing of complete graph and cycles |
title_fullStr |
On friendly index sets of the edge-gluing of complete graph and cycles |
title_full_unstemmed |
On friendly index sets of the edge-gluing of complete graph and cycles |
title_sort |
On friendly index sets of the edge-gluing of complete graph and cycles |
publishDate |
2016 |
container_title |
AKCE International Journal of Graphs and Combinatorics |
container_volume |
13 |
container_issue |
2 |
doi_str_mv |
10.1016/j.akcej.2016.06.004 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978877393&doi=10.1016%2fj.akcej.2016.06.004&partnerID=40&md5=52adceb47c91bea85f47c48310adddeb |
description |
Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}|. We say f is friendly if |vf(0)−vf(1)|≤1. We say G is cordial if |ef(1)−ef(0)|≤1 for a friendly labeling f. The set FI(G)={|ef(1)−ef(0)|:f is friendly} is called the friendly index set of G. In this paper, we investigate the friendly index sets of the edge-gluing of a complete graph Kn and n copies of cycles C3. The cordiality of the graphs is also determined. © 2016 |
publisher |
Kalasalingam University |
issn |
9728600 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677607088685056 |