On friendly index sets of the edge-gluing of complete graph and cycles

Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}|. We say f is friendly if |vf(0)−vf(1)|≤1. We say G is cordia...

Full description

Bibliographic Details
Published in:AKCE International Journal of Graphs and Combinatorics
Main Author: Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y.
Format: Article
Language:English
Published: Kalasalingam University 2016
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978877393&doi=10.1016%2fj.akcej.2016.06.004&partnerID=40&md5=52adceb47c91bea85f47c48310adddeb
Description
Summary:Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}|. We say f is friendly if |vf(0)−vf(1)|≤1. We say G is cordial if |ef(1)−ef(0)|≤1 for a friendly labeling f. The set FI(G)={|ef(1)−ef(0)|:f is friendly} is called the friendly index set of G. In this paper, we investigate the friendly index sets of the edge-gluing of a complete graph Kn and n copies of cycles C3. The cordiality of the graphs is also determined. © 2016
ISSN:9728600
DOI:10.1016/j.akcej.2016.06.004