Sector complexity measures: A comparison

In developing a more advanced human-machine systems for future Air Traffic Management (ATM) concepts requires a deep understanding of what constitutes operator workload and how taskload and sector complexity can affect it. Many efforts have been done in the past to measure and/or predict operator wo...

Full description

Bibliographic Details
Published in:Jurnal Teknologi
Main Author: Rahman S.M.A.; Borst C.; Mulder M.; van Paassen R.
Format: Article
Language:English
Published: Penerbit UTM Press 2015
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944564636&doi=10.11113%2fjt.v76.5923&partnerID=40&md5=9b2f0c233d4e861addef7b7b1020b99a
id 2-s2.0-84944564636
spelling 2-s2.0-84944564636
Rahman S.M.A.; Borst C.; Mulder M.; van Paassen R.
Sector complexity measures: A comparison
2015
Jurnal Teknologi
76
11
10.11113/jt.v76.5923
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944564636&doi=10.11113%2fjt.v76.5923&partnerID=40&md5=9b2f0c233d4e861addef7b7b1020b99a
In developing a more advanced human-machine systems for future Air Traffic Management (ATM) concepts requires a deep understanding of what constitutes operator workload and how taskload and sector complexity can affect it. Many efforts have been done in the past to measure and/or predict operator workload using sector complexity. However, most sector complexity metrics that include sector design are calculated according to a set of rules and subjective weightings, rendering them to be dependent of sector. This research focuses on comparing the Solution Space Diagram (SSD) method with a widely accepted complexity metric: Dynamic Density (DD). In essence, the SSD method used in this research, observed aircraft restrictions and opportunities to resolve traffic conflicts in both the speed and heading dimensions. It is hypothesized that the more area covered on the solution space, that is, the fewer options the controller has to resolve conflicts, the more difficult the task and the higher the workload experienced by the controller. To compare sector complexity measures in terms of their transferability in capturing dynamic complexity across different sectors, a human-in-the-loop experiment using two distinct sectors has been designed and conducted. Based on the experiments, it is revealed that the SSD metric has a higher correlation with the controllers' workload ratings than the number of aircraft and the un-weighted NASA DD metric. Although linear regression analysis improved the correlation between the workload ratings and the weighted DD metric as compared to the SSD metric, the DD metric proved to be more sensitive to changes in sector layout than the SSD metric. This result would indicate that the SSD metric is better able to capture controller workload than the DD metric, when tuning for a specific sector layout is not feasible. © 2015 Penerbit UTM Press. All rights reserved.
Penerbit UTM Press
1279696
English
Article
All Open Access; Bronze Open Access
author Rahman S.M.A.; Borst C.; Mulder M.; van Paassen R.
spellingShingle Rahman S.M.A.; Borst C.; Mulder M.; van Paassen R.
Sector complexity measures: A comparison
author_facet Rahman S.M.A.; Borst C.; Mulder M.; van Paassen R.
author_sort Rahman S.M.A.; Borst C.; Mulder M.; van Paassen R.
title Sector complexity measures: A comparison
title_short Sector complexity measures: A comparison
title_full Sector complexity measures: A comparison
title_fullStr Sector complexity measures: A comparison
title_full_unstemmed Sector complexity measures: A comparison
title_sort Sector complexity measures: A comparison
publishDate 2015
container_title Jurnal Teknologi
container_volume 76
container_issue 11
doi_str_mv 10.11113/jt.v76.5923
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944564636&doi=10.11113%2fjt.v76.5923&partnerID=40&md5=9b2f0c233d4e861addef7b7b1020b99a
description In developing a more advanced human-machine systems for future Air Traffic Management (ATM) concepts requires a deep understanding of what constitutes operator workload and how taskload and sector complexity can affect it. Many efforts have been done in the past to measure and/or predict operator workload using sector complexity. However, most sector complexity metrics that include sector design are calculated according to a set of rules and subjective weightings, rendering them to be dependent of sector. This research focuses on comparing the Solution Space Diagram (SSD) method with a widely accepted complexity metric: Dynamic Density (DD). In essence, the SSD method used in this research, observed aircraft restrictions and opportunities to resolve traffic conflicts in both the speed and heading dimensions. It is hypothesized that the more area covered on the solution space, that is, the fewer options the controller has to resolve conflicts, the more difficult the task and the higher the workload experienced by the controller. To compare sector complexity measures in terms of their transferability in capturing dynamic complexity across different sectors, a human-in-the-loop experiment using two distinct sectors has been designed and conducted. Based on the experiments, it is revealed that the SSD metric has a higher correlation with the controllers' workload ratings than the number of aircraft and the un-weighted NASA DD metric. Although linear regression analysis improved the correlation between the workload ratings and the weighted DD metric as compared to the SSD metric, the DD metric proved to be more sensitive to changes in sector layout than the SSD metric. This result would indicate that the SSD metric is better able to capture controller workload than the DD metric, when tuning for a specific sector layout is not feasible. © 2015 Penerbit UTM Press. All rights reserved.
publisher Penerbit UTM Press
issn 1279696
language English
format Article
accesstype All Open Access; Bronze Open Access
record_format scopus
collection Scopus
_version_ 1809677911978934272