Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM
With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating...
Published in: | PLoS ONE |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Public Library of Science
2015
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940181513&doi=10.1371%2fjournal.pone.0132552&partnerID=40&md5=6eb20377c0e644f90855cc362698bd04 |
id |
2-s2.0-84940181513 |
---|---|
spelling |
2-s2.0-84940181513 Chen J.; Ahmad R.; Suenaga H.; Li W.; Sasaki K.; Swain M.; Li Q. Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM 2015 PLoS ONE 10 7 10.1371/journal.pone.0132552 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940181513&doi=10.1371%2fjournal.pone.0132552&partnerID=40&md5=6eb20377c0e644f90855cc362698bd04 With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), tomaximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalizedmodeling, computational optimization, and free-form fabrication enablesmore efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. Copyright: © 2015 Chen et al. Public Library of Science 19326203 English Article All Open Access; Gold Open Access; Green Open Access |
author |
Chen J.; Ahmad R.; Suenaga H.; Li W.; Sasaki K.; Swain M.; Li Q. |
spellingShingle |
Chen J.; Ahmad R.; Suenaga H.; Li W.; Sasaki K.; Swain M.; Li Q. Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
author_facet |
Chen J.; Ahmad R.; Suenaga H.; Li W.; Sasaki K.; Swain M.; Li Q. |
author_sort |
Chen J.; Ahmad R.; Suenaga H.; Li W.; Sasaki K.; Swain M.; Li Q. |
title |
Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
title_short |
Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
title_full |
Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
title_fullStr |
Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
title_full_unstemmed |
Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
title_sort |
Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM |
publishDate |
2015 |
container_title |
PLoS ONE |
container_volume |
10 |
container_issue |
7 |
doi_str_mv |
10.1371/journal.pone.0132552 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940181513&doi=10.1371%2fjournal.pone.0132552&partnerID=40&md5=6eb20377c0e644f90855cc362698bd04 |
description |
With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), tomaximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalizedmodeling, computational optimization, and free-form fabrication enablesmore efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. Copyright: © 2015 Chen et al. |
publisher |
Public Library of Science |
issn |
19326203 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775477780938752 |