An integrated approach for platoon-based simulation and its feasibility assessment
Research on developing mathematical and simulative models to evaluate performance of signalized arterials is still ongoing. In this paper, an integrated model (IM) based on Rakha vehicle dynamics and LWR model is proposed. The IM which imitates actuated performance measurement in signalized arterial...
Published in: | PLoS ONE |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Public Library of Science
2015
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925438664&doi=10.1371%2fjournal.pone.0114406&partnerID=40&md5=d968fe4db346a1a0af416dc12588c7d5 |
id |
2-s2.0-84925438664 |
---|---|
spelling |
2-s2.0-84925438664 Ng K.M.; Reaz M.B.I. An integrated approach for platoon-based simulation and its feasibility assessment 2015 PLoS ONE 10 3 10.1371/journal.pone.0114406 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925438664&doi=10.1371%2fjournal.pone.0114406&partnerID=40&md5=d968fe4db346a1a0af416dc12588c7d5 Research on developing mathematical and simulative models to evaluate performance of signalized arterials is still ongoing. In this paper, an integrated model (IM) based on Rakha vehicle dynamics and LWR model is proposed. The IM which imitates actuated performance measurement in signalized arterials is described using continuous timed Petri net with variable speeds (VCPN). This enables systematic discretized description of platoon movement from an upstream signalized intersection towards a downstream signalized intersection. The integration is based on the notion that speed and travel time characteristics in a link can be provided using Rakha model. This will assist the LWR to estimate arrival profiles of vehicles at downstream intersection. One immediate benefit of the model is that platoon arrival profile obtained from the IM can be directly manipulated to estimate queues and delays at the target intersection using input-output analysis without considering the effect of shockwaves. This is less tedious as compared to analysing the LWR model through tracing trajectory of shockwave. Besides, time parameters of a platoon could be estimated for self-scheduling control approach from a cycle to cycle basis. The proposed IM is applied to a test intersection where simulated queues and average delays from the IM are compared with the platoon dispersion model (PDM) implemented in TRANSYT, cell transmission model (CTM) and HCM2000 for both under-saturated and oversaturated situations. The comparisons yielded acceptable and reasonable results, thus ascertained the feasibility and validity of the model. © 2015 Ng, Reaz. Public Library of Science 19326203 English Article All Open Access; Gold Open Access; Green Open Access |
author |
Ng K.M.; Reaz M.B.I. |
spellingShingle |
Ng K.M.; Reaz M.B.I. An integrated approach for platoon-based simulation and its feasibility assessment |
author_facet |
Ng K.M.; Reaz M.B.I. |
author_sort |
Ng K.M.; Reaz M.B.I. |
title |
An integrated approach for platoon-based simulation and its feasibility assessment |
title_short |
An integrated approach for platoon-based simulation and its feasibility assessment |
title_full |
An integrated approach for platoon-based simulation and its feasibility assessment |
title_fullStr |
An integrated approach for platoon-based simulation and its feasibility assessment |
title_full_unstemmed |
An integrated approach for platoon-based simulation and its feasibility assessment |
title_sort |
An integrated approach for platoon-based simulation and its feasibility assessment |
publishDate |
2015 |
container_title |
PLoS ONE |
container_volume |
10 |
container_issue |
3 |
doi_str_mv |
10.1371/journal.pone.0114406 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925438664&doi=10.1371%2fjournal.pone.0114406&partnerID=40&md5=d968fe4db346a1a0af416dc12588c7d5 |
description |
Research on developing mathematical and simulative models to evaluate performance of signalized arterials is still ongoing. In this paper, an integrated model (IM) based on Rakha vehicle dynamics and LWR model is proposed. The IM which imitates actuated performance measurement in signalized arterials is described using continuous timed Petri net with variable speeds (VCPN). This enables systematic discretized description of platoon movement from an upstream signalized intersection towards a downstream signalized intersection. The integration is based on the notion that speed and travel time characteristics in a link can be provided using Rakha model. This will assist the LWR to estimate arrival profiles of vehicles at downstream intersection. One immediate benefit of the model is that platoon arrival profile obtained from the IM can be directly manipulated to estimate queues and delays at the target intersection using input-output analysis without considering the effect of shockwaves. This is less tedious as compared to analysing the LWR model through tracing trajectory of shockwave. Besides, time parameters of a platoon could be estimated for self-scheduling control approach from a cycle to cycle basis. The proposed IM is applied to a test intersection where simulated queues and average delays from the IM are compared with the platoon dispersion model (PDM) implemented in TRANSYT, cell transmission model (CTM) and HCM2000 for both under-saturated and oversaturated situations. The comparisons yielded acceptable and reasonable results, thus ascertained the feasibility and validity of the model. © 2015 Ng, Reaz. |
publisher |
Public Library of Science |
issn |
19326203 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775476773257216 |