Summary: | The runtime management of Internet of Things (IoT) oriented applications deployed in multi-clouds is a complex issue due to the highly heterogeneous and dynamic execution environment. To effectively cope with such an environment, the cross-layer and multi-cloud effects should be taken into account and a decentralized self-adaptation is a promising solution to maintain and evolve the applications for quality assurance. An important issue to be tackled towards realizing this solution is the uncertainty effect of the adaptation, which may cause negative impact to the other layers or even clouds. In this paper, we tackle such an issue from the planning perspective, since an inappropriate planning strategy can fail the adaptation outcome. Therefore, we present an architectural model for decentralized self-adaptation to support the cross-layer and multi-cloud environment. We also propose a planning model and method to enable the decentralized decision making. The planning is formulated as a Reinforcement Learning problem and solved using the Q-learning algorithm. Through simulation experiments, we conduct a study to assess the effectiveness and sensitivity of the proposed planning approach. The results show that our approach can potentially reduce the negative impact on the cross-layer and multi-cloud environment. © Springer International Publishing Switzerland 2015.
|