On k-step Hamiltonian graphs
For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) i...
Published in: | Journal of Combinatorial Mathematics and Combinatorial Computing |
---|---|
Main Author: | Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S. |
Format: | Article |
Language: | English |
Published: |
Charles Babbage Research Centre
2014
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766 |
Similar Items
-
A complete solution of 3-step hamiltonian grids and torus graphs
by: Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
Published: (2019) -
On k-super graceful graphs with extremal maximum vertex degree
by: Lau G.-C.; Shiu W.C.; Ng H.-K.; Gao Z.-B.; Schaffer K.
Published: (2024) -
On k-super graceful graphs with extremal maximum vertex degree
by: Lau, et al.
Published: (2024) -
EVERY GRAPH IS LOCAL ANTIMAGIC TOTAL AND ITS APPLICATIONS
by: Lau G.-C.; Schaffer K.; Shiu W.C.
Published: (2023) -
On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
by: Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
Published: (2023)