On k-step Hamiltonian graphs
For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) i...
Published in: | Journal of Combinatorial Mathematics and Combinatorial Computing |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Charles Babbage Research Centre
2014
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766 |
id |
2-s2.0-84906237290 |
---|---|
spelling |
2-s2.0-84906237290 Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S. On k-step Hamiltonian graphs 2014 Journal of Combinatorial Mathematics and Combinatorial Computing 90 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766 For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) if it has an (AL(k)-traversal and d(v1, vp) = k. In this paper, we investigate the k-step Hamiltonicity of graphs. In particular, we show that every graph is an induced subgraph of a k-step Hamiltonian graph for all k 2. Charles Babbage Research Centre 8353026 English Article |
author |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S. |
spellingShingle |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S. On k-step Hamiltonian graphs |
author_facet |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S. |
author_sort |
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S. |
title |
On k-step Hamiltonian graphs |
title_short |
On k-step Hamiltonian graphs |
title_full |
On k-step Hamiltonian graphs |
title_fullStr |
On k-step Hamiltonian graphs |
title_full_unstemmed |
On k-step Hamiltonian graphs |
title_sort |
On k-step Hamiltonian graphs |
publishDate |
2014 |
container_title |
Journal of Combinatorial Mathematics and Combinatorial Computing |
container_volume |
90 |
container_issue |
|
doi_str_mv |
|
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766 |
description |
For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) if it has an (AL(k)-traversal and d(v1, vp) = k. In this paper, we investigate the k-step Hamiltonicity of graphs. In particular, we show that every graph is an induced subgraph of a k-step Hamiltonian graph for all k 2. |
publisher |
Charles Babbage Research Centre |
issn |
8353026 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1818940563973472256 |