Comparison between PSO and OLS for NARX parameter estimation of a DC motor

Recent works suggest that the Particle Swarm Optimization (PSO) algorithm is a highly-efficient optimization technique for structure selection of NARMAX and its derivative models. This research extends those findings by proposing PSO for parameter estimation of a Nonlinear Auto-Regressive with Exoge...

Full description

Bibliographic Details
Published in:ISIEA 2013 - 2013 IEEE Symposium on Industrial Electronics and Applications
Main Author: Mohamad M.S.A.; Yassin I.M.; Zabidi A.; Taib M.N.; Adnan R.
Format: Conference paper
Language:English
Published: 2013
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897689421&doi=10.1109%2fISIEA.2013.6738962&partnerID=40&md5=016658769390f51de35de0a846bc8c1f
id 2-s2.0-84897689421
spelling 2-s2.0-84897689421
Mohamad M.S.A.; Yassin I.M.; Zabidi A.; Taib M.N.; Adnan R.
Comparison between PSO and OLS for NARX parameter estimation of a DC motor
2013
ISIEA 2013 - 2013 IEEE Symposium on Industrial Electronics and Applications


10.1109/ISIEA.2013.6738962
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897689421&doi=10.1109%2fISIEA.2013.6738962&partnerID=40&md5=016658769390f51de35de0a846bc8c1f
Recent works suggest that the Particle Swarm Optimization (PSO) algorithm is a highly-efficient optimization technique for structure selection of NARMAX and its derivative models. This research extends those findings by proposing PSO for parameter estimation of a Nonlinear Auto-Regressive with Exogenous (NARX) model for a Direct Current (DC) motor. The proposed method was compared to the established Orthogonal Least Squares (OLS) method. The findings indicate that PSO was comparable to OLS in solving the Least Squares (LS) parameter estimation problem posed in the NARX model. © 2013 IEEE.


English
Conference paper

author Mohamad M.S.A.; Yassin I.M.; Zabidi A.; Taib M.N.; Adnan R.
spellingShingle Mohamad M.S.A.; Yassin I.M.; Zabidi A.; Taib M.N.; Adnan R.
Comparison between PSO and OLS for NARX parameter estimation of a DC motor
author_facet Mohamad M.S.A.; Yassin I.M.; Zabidi A.; Taib M.N.; Adnan R.
author_sort Mohamad M.S.A.; Yassin I.M.; Zabidi A.; Taib M.N.; Adnan R.
title Comparison between PSO and OLS for NARX parameter estimation of a DC motor
title_short Comparison between PSO and OLS for NARX parameter estimation of a DC motor
title_full Comparison between PSO and OLS for NARX parameter estimation of a DC motor
title_fullStr Comparison between PSO and OLS for NARX parameter estimation of a DC motor
title_full_unstemmed Comparison between PSO and OLS for NARX parameter estimation of a DC motor
title_sort Comparison between PSO and OLS for NARX parameter estimation of a DC motor
publishDate 2013
container_title ISIEA 2013 - 2013 IEEE Symposium on Industrial Electronics and Applications
container_volume
container_issue
doi_str_mv 10.1109/ISIEA.2013.6738962
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897689421&doi=10.1109%2fISIEA.2013.6738962&partnerID=40&md5=016658769390f51de35de0a846bc8c1f
description Recent works suggest that the Particle Swarm Optimization (PSO) algorithm is a highly-efficient optimization technique for structure selection of NARMAX and its derivative models. This research extends those findings by proposing PSO for parameter estimation of a Nonlinear Auto-Regressive with Exogenous (NARX) model for a Direct Current (DC) motor. The proposed method was compared to the established Orthogonal Least Squares (OLS) method. The findings indicate that PSO was comparable to OLS in solving the Least Squares (LS) parameter estimation problem posed in the NARX model. © 2013 IEEE.
publisher
issn
language English
format Conference paper
accesstype
record_format scopus
collection Scopus
_version_ 1809678488380112896