Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA)
Future PM10 concentration prediction is very important because it can help local authorities to enact preventative measures to reduce the impact of air pollution. The aims of this study are to improve prediction of Multiple Linear Regression (MLR) and Feedforward backpropagation (FFBP) by combining...
Published in: | Atmospheric Environment |
---|---|
Main Author: | Ul-Saufie A.Z.; Yahaya A.S.; Ramli N.A.; Rosaida N.; Hamid H.A. |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879735938&doi=10.1016%2fj.atmosenv.2013.05.017&partnerID=40&md5=84c0cd74ad41648f337f1baece74a707 |
Similar Items
-
Coupling of quantile regression into boosted regression trees (BRT) technique in forecasting emission model of PM10 concentration
by: Shaziayani W.N.; Ul-Saufie A.Z.; Ahmat H.; Al-Jumeily D.
Published: (2021) -
A Novel Hybrid Model Combining the Support Vector Machine (SVM) and Boosted Regression Trees (BRT) Technique in Predicting PM10 Concentration
by: Shaziayani W.N.; Ahmat H.; Razak T.R.; Zainan Abidin A.W.; Warris S.N.; Asmat A.; Noor N.M.; Ul-Saufie A.Z.
Published: (2022) -
Performance of Bayesian Model Averaging (BMA) for Short-Term Prediction of PM10 Concentration in the Peninsular Malaysia
by: Ramli N.; Abdul Hamid H.; Yahaya A.S.; Ul-Saufie A.Z.; Mohamed Noor N.; Abu Seman N.A.; Kamarudzaman A.N.; Deák G.
Published: (2023) -
MODELING OF PARTICULATE MATTER (PM10) DURING HIGH PARTICULATE EVENT (HPE) IN KLANG VALLEY, MALAYSIA
by: Mohd Ridzuan N.A.; Mohamed Noor N.; Rahim N.A.A.A.; Mohd Jafri I.A.; Ul Saufie A.Z.; Mohd Arif Zainol M.R.R.; Kamaruddin M.A.; Deák G.
Published: (2022) -
The Development of the Vulnerability Index (VI) using Principal Component Analysis (PCA)
by: Salleh, et al.
Published: (2023)