Characterization of light absorption in thin-film silicon with periodic nanohole arrays
Light absorption in thin-film nanostructured monocrystalline silicon (c-Si) in a glass/Ag(0.2 μm)/c-Si(1 μm) stack is characterized using simulations and measurements. Nanohole (NH) arrays designed for a practical thin-film solar cell configuration experimentally exhibit a significant improvement of...
Published in: | Optics Express |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Optical Society of American (OSA)
2013
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875172888&doi=10.1364%2fOE.21.005924&partnerID=40&md5=07d9188732a2d673716b88c330c9e84f |
id |
2-s2.0-84875172888 |
---|---|
spelling |
2-s2.0-84875172888 Yahaya N.A.; Yamada N.; Kotaki Y.; Nakayama T. Characterization of light absorption in thin-film silicon with periodic nanohole arrays 2013 Optics Express 21 5 10.1364/OE.21.005924 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875172888&doi=10.1364%2fOE.21.005924&partnerID=40&md5=07d9188732a2d673716b88c330c9e84f Light absorption in thin-film nanostructured monocrystalline silicon (c-Si) in a glass/Ag(0.2 μm)/c-Si(1 μm) stack is characterized using simulations and measurements. Nanohole (NH) arrays designed for a practical thin-film solar cell configuration experimentally exhibit a significant improvement of the light absorption in the 1-μm ultrathin c-Si layer that exceeds the theoretical Yablonovitch limit in the long wavelength range. Fabricated square-lattice and hexagonal NH arrays give relative improvements of 65 and 70%, respectively, in the total absorption compared to a nonpatterned stack. The effect of an indium-tin-oxide (ITO) coating is also simulated, and an empty NH configuration gives the lowest ITO parasitic absorption. © 2013 Optical Society of America. Optical Society of American (OSA) 10944087 English Article All Open Access; Gold Open Access |
author |
Yahaya N.A.; Yamada N.; Kotaki Y.; Nakayama T. |
spellingShingle |
Yahaya N.A.; Yamada N.; Kotaki Y.; Nakayama T. Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
author_facet |
Yahaya N.A.; Yamada N.; Kotaki Y.; Nakayama T. |
author_sort |
Yahaya N.A.; Yamada N.; Kotaki Y.; Nakayama T. |
title |
Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
title_short |
Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
title_full |
Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
title_fullStr |
Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
title_full_unstemmed |
Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
title_sort |
Characterization of light absorption in thin-film silicon with periodic nanohole arrays |
publishDate |
2013 |
container_title |
Optics Express |
container_volume |
21 |
container_issue |
5 |
doi_str_mv |
10.1364/OE.21.005924 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875172888&doi=10.1364%2fOE.21.005924&partnerID=40&md5=07d9188732a2d673716b88c330c9e84f |
description |
Light absorption in thin-film nanostructured monocrystalline silicon (c-Si) in a glass/Ag(0.2 μm)/c-Si(1 μm) stack is characterized using simulations and measurements. Nanohole (NH) arrays designed for a practical thin-film solar cell configuration experimentally exhibit a significant improvement of the light absorption in the 1-μm ultrathin c-Si layer that exceeds the theoretical Yablonovitch limit in the long wavelength range. Fabricated square-lattice and hexagonal NH arrays give relative improvements of 65 and 70%, respectively, in the total absorption compared to a nonpatterned stack. The effect of an indium-tin-oxide (ITO) coating is also simulated, and an empty NH configuration gives the lowest ITO parasitic absorption. © 2013 Optical Society of America. |
publisher |
Optical Society of American (OSA) |
issn |
10944087 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678488415764480 |