Summary: | We investigate the ability of high spatial resolution (~120μm) Ge-doped SiO 2 TL dosimeters to measure photoelectron dose enhancement resulting from the use of a moderate to high-Z target (an iodinated contrast media) irradiated by 90kVp X-rays. We imagine its application in a novel radiation synovectomy technique, modelled by a phantom containing a reservoir of I 2 molecules at the interface of which the doped silica dosimeters are located. Measurements outside of the iodine photoelectron range are provided for using a stepped-design that allows insertion of the fibres within the phantom. Monte Carlo simulation (MCNPX) is used for verification. At the phantom medium I 2-interface additional photoelectron generation is observed, ~60% above that in the absence of the I 2, simulations providing agreement to within 3%. Percentage depth doses measured away from the iodine contrast medium reservoir are bounded by published PDDs at 80kVp and 100kVp. © 2011 Elsevier Ltd.
|