Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network

This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control s...

Full description

Bibliographic Details
Published in:Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012
Main Author: Yunan I.; Yassin I.M.; Adnan S.F.S.; Rahiman M.H.F.
Format: Conference paper
Language:English
Published: 2012
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861537546&doi=10.1109%2fCSPA.2012.6194779&partnerID=40&md5=63cd12214de8b1ceb4d809f763079d11
id 2-s2.0-84861537546
spelling 2-s2.0-84861537546
Yunan I.; Yassin I.M.; Adnan S.F.S.; Rahiman M.H.F.
Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
2012
Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012


10.1109/CSPA.2012.6194779
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861537546&doi=10.1109%2fCSPA.2012.6194779&partnerID=40&md5=63cd12214de8b1ceb4d809f763079d11
This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control signal, and outputs depicting temperatures inside the distillation column. One Step Ahead (OSA) model fitting and residual tests demonstrated that the RBFNN-based NARX model was able to approximate the system well, while satisfying all validation criterias. © 2012 IEEE.


English
Conference paper

author Yunan I.; Yassin I.M.; Adnan S.F.S.; Rahiman M.H.F.
spellingShingle Yunan I.; Yassin I.M.; Adnan S.F.S.; Rahiman M.H.F.
Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
author_facet Yunan I.; Yassin I.M.; Adnan S.F.S.; Rahiman M.H.F.
author_sort Yunan I.; Yassin I.M.; Adnan S.F.S.; Rahiman M.H.F.
title Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
title_short Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
title_full Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
title_fullStr Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
title_full_unstemmed Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
title_sort Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
publishDate 2012
container_title Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, CSPA 2012
container_volume
container_issue
doi_str_mv 10.1109/CSPA.2012.6194779
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861537546&doi=10.1109%2fCSPA.2012.6194779&partnerID=40&md5=63cd12214de8b1ceb4d809f763079d11
description This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control signal, and outputs depicting temperatures inside the distillation column. One Step Ahead (OSA) model fitting and residual tests demonstrated that the RBFNN-based NARX model was able to approximate the system well, while satisfying all validation criterias. © 2012 IEEE.
publisher
issn
language English
format Conference paper
accesstype
record_format scopus
collection Scopus
_version_ 1809677913411289088