Identification of DC motor drive system model using Radial Basis Function (RBF) neural network
In this paper, we present a Radial Basis Function Neural Network (RBFNN)-based Nonlinear Auto-Regressive Model with Exegeneous Inputs (NARX) model of a DC motor drive controller model by (Rahim, 2004). Tests were conducted to measure the accuracy of the model (using One Step Ahead (OSA) and its vali...
Published in: | 2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011 |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
2011
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855691826&doi=10.1109%2fISIEA.2011.6108685&partnerID=40&md5=9df1bc04a9f5e754de8a179097fa6d93 |
id |
2-s2.0-84855691826 |
---|---|
spelling |
2-s2.0-84855691826 Yassin I.M.; Taib M.N.; Abdul Aziz M.Z.; Abdul Rahim N.; Tahir N.Md.; Johari A. Identification of DC motor drive system model using Radial Basis Function (RBF) neural network 2011 2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011 10.1109/ISIEA.2011.6108685 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855691826&doi=10.1109%2fISIEA.2011.6108685&partnerID=40&md5=9df1bc04a9f5e754de8a179097fa6d93 In this paper, we present a Radial Basis Function Neural Network (RBFNN)-based Nonlinear Auto-Regressive Model with Exegeneous Inputs (NARX) model of a DC motor drive controller model by (Rahim, 2004). Tests were conducted to measure the accuracy of the model (using One Step Ahead (OSA) and its validity (using correlation tests and histogram analysis). The resulting model produced Mean Square Error (MSE) of 8.53 x 10 -3 and 8.82 x 10 -3 on the training set and test set, respectively, while fulfilling all validation tests performed. © 2011 IEEE. English Conference paper |
author |
Yassin I.M.; Taib M.N.; Abdul Aziz M.Z.; Abdul Rahim N.; Tahir N.Md.; Johari A. |
spellingShingle |
Yassin I.M.; Taib M.N.; Abdul Aziz M.Z.; Abdul Rahim N.; Tahir N.Md.; Johari A. Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
author_facet |
Yassin I.M.; Taib M.N.; Abdul Aziz M.Z.; Abdul Rahim N.; Tahir N.Md.; Johari A. |
author_sort |
Yassin I.M.; Taib M.N.; Abdul Aziz M.Z.; Abdul Rahim N.; Tahir N.Md.; Johari A. |
title |
Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
title_short |
Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
title_full |
Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
title_fullStr |
Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
title_full_unstemmed |
Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
title_sort |
Identification of DC motor drive system model using Radial Basis Function (RBF) neural network |
publishDate |
2011 |
container_title |
2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011 |
container_volume |
|
container_issue |
|
doi_str_mv |
10.1109/ISIEA.2011.6108685 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855691826&doi=10.1109%2fISIEA.2011.6108685&partnerID=40&md5=9df1bc04a9f5e754de8a179097fa6d93 |
description |
In this paper, we present a Radial Basis Function Neural Network (RBFNN)-based Nonlinear Auto-Regressive Model with Exegeneous Inputs (NARX) model of a DC motor drive controller model by (Rahim, 2004). Tests were conducted to measure the accuracy of the model (using One Step Ahead (OSA) and its validity (using correlation tests and histogram analysis). The resulting model produced Mean Square Error (MSE) of 8.53 x 10 -3 and 8.82 x 10 -3 on the training set and test set, respectively, while fulfilling all validation tests performed. © 2011 IEEE. |
publisher |
|
issn |
|
language |
English |
format |
Conference paper |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809677914228129792 |